Translator NodeBrain Module

Release 0.9.03

Translator NodeBrain Module
December 2014
NodeBrain Open Source Project

Release 0.9.03
Author: Ed Trettevik
Copyright (©) 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License
Copyright (©) 2014 Ed Trettevik <eat@nodebrain.org>

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License
Copyright (© 2014 Ed Trettevik <eat@nodebrain.org>

Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.

Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History
2005-10-12

2010-12-31

Title: Translator NodeBrain Module
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Soure Project

Release 0.8.3
e Updates - still needed

Preface

This module is intended for readers seeking an introduction to NodeBrain through a series
of simple examples. Other documents are available for readers looking for a more complete
reference to the rule language, modules, or API (application programmatic interface).

The intent of the examples is to illustrate individual concepts, not to provide complete
working applications or show all related options. We avoid formal syntax descriptions,
thinking you are here because you want to figure it out from examples.

Files referenced in this tutorial are included in the tutorial directory of the NodeBrain
distribution.

See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Guide - Information on using nb

NodeBrain Tutorial - A gentle introduction to nb and the rule language
NodeBrain Language - Rule language syntax and semantics

NodeBrain Library - C API

Document Conventions

Sample code and input/output examples are displayed in a monospace font, indented in
HTML and Info, and enclosed in a box in PDF or printed copies. Bold text is used to bring
the reader’s attention to specific portions of an example. In the following example, the first
and last line are associated with the host shell and the lines in between are input or output
unique to NodeBrain. The define command is highlighted, indicating it is the focus of the
example. Lines ending with a backslash \ indicate when a command is continued on the
next displayed line. This is supported by the language within source files, but not for other
methods of command input. If you copy an example of a command displayed over multiple
lines, you must enter it as a single line when used outside the context of a source file.

$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";

> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\
e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NBOOOI Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$

N

Table of Contents

1 Conceptsciiiiiiiiii 1
2 Tutorial....... 3
2.1 Foreign Text ... e 3
2.2 Translator File. 3
2.3 Rule File Using Translator Node................................ 5
2.4 Lostin Translation........ ... 6
3 Commands............. 9
3.1 Define ..o 9
3.2 ASSETHIONS . o v v ettt 9
3.3 Cell EXpressions. 9
3.4 Node CommandsS.ouuirnei i 9
4 Triggerst 11
Index 13

Translator NodeBrain Module

Chapter 1: Concepts December 2014

1 Concepts

A translator node accepts character strings and, based on regular expression matching,
translates them into classification values and/or NodeBrain commands.

Translator NodeBrain Module 1

Chapter 2: Tutorial December 2014

2 Tutorial

I don’t mind what language an opera is sung in so long as it is a language [
don’t understand. —Sir Edward Appleton (1892-1965)

NodeBrain supports rules used to translate an opera into NodeBrain commands. Well,
okay, not exactly an opera, but lines of text conforming to some foreign syntax for which
the significant elements can be recognized and extracted with regular expressions. The
desired translation is specified in a NodeBrain translation rule file called a "translator."
This capability is made available to node modules via the API. The Translator node module
is a simple example of one that uses NodeBrain’s translator feature.

2.1 Foreign Text

Let’s start this tutorial with a file named opera.txt containing the text of a Mother Goose
rhyme.

()
File: tutorial/Translator/opera.txt
#
Mother Goose Nursery Rhyme
The Man Who Had Naught
#
There was a man and he had naught,
And robbers came to rob him;
He crept up to the chimney pot,
And then they thought they had him.

But he got down on t’other side,
And then they could not find him;
He ran fourteen miles in fifteen days,

And never looked behind him.
- J

2.2 Translator File

A translator recognizes elements of foreign text and converts it into NodeBrain commands.
Let’s create one called opera.nbx that can be used to translate files that look like the
opera.txt file.

Translator NodeBrain Module 3

December 2014 Chapter 2: Tutorial

(A
File: tutorial/Translator/opera.nbx
#

Ignore lines starting with "#"

#)

Pick up lines with "had" followed by a word,
but continue on looking for other matches

even when a match is found.

@(had (\w*)):alert type="Had",what="$[1]";

Look for "he had" lines - will be subset of "had" lines
(he had (\wx)):alert type="HeHad",what="$[1]";

Look for lines starting with "And".
(“\s*And){
(“then they){
(thought)
:assert info="$[=]";
}
CQwx)) [$0111{
"robbers":assert info="bad guys $[>]";
"never":assert info="they didn’t $[>]";
}
¥

Look for "He <verb>" lines.

(“He (creptlran)){
Q@"fourteen miles in fifteen days,":assert info="slow runner this man who had naught";
:assert heVerb="$[1]";
}

\

The lines starting with an open parenthesis (specify a regular expression up to the bal-
anced close parenthesis) to be matched against lines of foreign text. The first matching
expression determines the translation; that is, the translator stops on a match and subse-
quent expressions are not evaluated. However, if you start the line with "@(" instead, the
translator will continue even after a match.

If nothing follows the expression, as with ("#) and (thought) above, the translator takes
no action on a match. This means all lines starting with # will translate into nothing. You
could say they are ignored or suppressed.

An expression can also be followed by a single action, like the @(had (\w*)) and (he had
(\w*)) expressions which are followed by ":alert ...".

When an expression is followed by "{", a nested translator is specified until the following
"}". A nested translator matches against the text following the previous match. Let’s
consider the input line "And then they thought they had him." When this line matches
("s*And) in the translator, the nested translation block will work on "then they thought
they had him." After a match on (“then they), nested translation continues trying to
match "thought they had him."

NodeBrain commands are passed to the interpreter with an expression starting with colon
(:) to distinguish them from other operations supported by the translator. A $[n] in the
command is replaced with the string matching the nth parenthetical subexpression, starting

4 Translator NodeBrain Module

Chapter 2: Tutorial December 2014

at 0 for the outer parenthesis. A $[=] is replaced with the text being matched, and $[>]
is replaced with the text following the last match.

The text buffer can be replaced with an expression of the form [text]. In the example
above, the [$[1]] following (= (\w*)) replaces the text buffer with the matched word.

Strings enclosed in double quotes (e.g., "robbers") specify an exact match. When strings
are used, they must be placed at the start of a block. NodeBrain likes to look for exact
matches before regular expressions.

2.3 Rule File Using Translator Node

A translator works in concert with NodeBrain rules—hopefully not as difficult to under-
stand as an operatic concert. Here’s a rule file called opera.nb designed to work with the
translator above.

-
#!/usr/local/bin/nb

File: tutorial/Translator/opera.nb
define opera node translator("opera.nbx");
opera. define rl on(info”"they didn’t");
opera. define r2 if (type="HeHad");

opera:And robbers got away.
opera:And never mind.
opera:And never worry.
opera("translate"):opera.txt

N

/)

The first highlighted line defines a translator node that uses the opera.nbx translator. The
two rules, r1 and r2, do nothing except demonstrate a rule can fire in response to foreign
text.

The second highlighted line, which starts with opera:, sends foreign text to the translator
node for translation. The last highlighted line, starting with opera(, directs the translator
nodes to translate the foreign text file opera.txt.

Translator NodeBrain Module 5

December 2014 Chapter 2: Tutorial

2.4 Lost in Translation

When you execute opera.nb, you should see something like this.

(" M
$./opera.nb

2009/01/28 17:49:27 NBOOOI Argument [1] ./opera.nb
> #!/usr/local/bin/nb

> # File: tutorial/Translator/opera.nb

> define opera node translator("opera.nbx");
2009/01/28 17:49:27 NB000I Loading translator "opera.nbx"

File: tutorial/Translator/opera.nbx
#

Ignore lines starting with "#"

#)

Pick up lines with "had" followed by a word,
but continue on looking for other matches

even when a match is found.

@(had (\w*)):alert type="Had",what="$[1]";

Look for "he had" lines - will be subset of "had" lines
(he had (\wx)):alert type="HeHad",what="$[1]";

Look for lines starting with "And".
(~\s*And){
(“then they){
(thought)
:assert info="$[=]";
}
CQw*)) I$0111{
"robbers":assert info="bad guys $[>]";
"never":assert info="they didn’t $[>]";
}
¥

Look for "He <verb>" lines.

("He (creptlran)){
Q@"fourteen miles in fifteen days,":assert info="slow runner this man who had naught";
:assert heVerb="$[1]";

2009/01/28 17:49:27 NBOOOI Translator "opera.nbx" loaded successfully.
=

. continued on next page ...

6 Translator NodeBrain Module

Chapter 2: Tutorial December 2014

opera. define rl on(info~"they didn’t");

opera. define r2 if (type="HeHad");

opera:And robbers got away.

opera. assert info="bad guys got away.";

opera:And never mind.

opera. assert info="they didn’t mind.";

2009/01/28 17:49:27 NB000I Rule opera.rl fired

> opera:And never worry.

> opera. assert info="they didn’t worry.";

> opera("translate") :opera.txt

------------------ > opera.txt

> opera. alert type="Had",what="naught";

> opera. alert type="HeHad",what="naught";

2009/01/28 17:49:27 NB000I Rule opera.r2 fired

opera. assert info="bad guys came to rob him;";

opera. assert heVerb="crept";

opera. alert type="Had",what="him";

opera. assert info="could not find him;";

opera. assert info="slow runner this man who had naught";
opera. assert heVerb="ran";

opera. assert info="they didn’t looked behind him.";
2009/01/28 17:49:27 NB000I Rule opera.rl fired
------------------ < opera.txt

2009/01/28 17:49:27 NBOOOI Source file "./opera.nb" included. size=237
2009/01/28 17:49:27 NBOOOI NodeBrain nb[16261] terminating - exit code=0

$
-

V V.V V VYV

V V V V V VYV

As an exercise, you should perform the translation yourself to make sure you understand
what is going on here. At least focus on the lines around the first firing of rule opera.ri,
starting with opera:And never mind. Walk And never mind. through the translator to see
why it emits assert info="they didn’t mind." triggering r1. Do you understand why
opera:And never worry. emits a similar assertion without trigging r1? It is a characteristic
of NodeBrain’s on rule and the fact that the condition didn’t change. An if rule would
have fired both times.

The translator opera.nbx is designed to operate on lines like those found in opera.txt,
and the rule file opera.nb is designed to work with the translator. You may have noticed
that the translator was not designed specifically to work with these rules, because it emits
commands that provide information the rules don’t need. In many cases, a translator and
a set of rules are designed together and the translator only emits information that the rules
use.

Translator NodeBrain Module 7

Chapter 3: Commands December 2014

3 Commands

This section describes the syntax and symantics of commands used with the Translator
module.

3.1 Define

A translator is specified in a translator file, but defined to NodeBrain using a define
command.

(éefine node node translator("filename"); :
Parameters Description
filename Name of translator file. The filename by convention has a ".nbx"

suffix, but this is not required.

See "Translators" in the NodeBrain Language Reference for information on coding translator
files.

3.2 Assertions

Strings may be asserted to a translator node for translation. A translator node accepts any
number of string arguments. When multiple arguments are asserted, they are translated in
the order specified.

define term on(condition) node(stringl,string2,...); # Asserted strings
assert node (stringl,string2,...); # Asserted strings

3.3 Cell Expressions

Translators may be used as cell expressions for string classification.

Eiefine term cell node (stringl,string2,...); j

The value of a translator cell expression is determined by the translator specification file. If
a "value" operator is not encountered during the string matching process, the value is 1 for
recognized strings and Unknown for unrecognized strings. Other values may be explicitly
specified within the translator using "value" operations of the form $(expression). When
value operations are encountered during the matching process, the last encountered value
determines the cell expression value. If the value of the matching operation on the first
argument string is Unknown, matching continues with subsequent argument strings until a
value other than Unknown is established or the end of the arugment list is reached.

3.4 Node Commands

Text may be sent to a translator using a node command.

Translator NodeBrain Module 9

December 2014 Chapter 3: Commands

{node:text }

A translator node also supports special node commands identified by a "verb" argument.

(node("verb"):body j

A verb of "translate" instructs the node to translate a file.

[%ode("translate"):filename j

A verb of "do" is used to send a command to the translator. This can be used to update
a translator dynamically in response to monitored conditions. See "Translators" in the
NodeBrain Language Reference for information on translator commands.

[node("do"):command }

10 Translator NodeBrain Module

Chapter 4: Triggers December 2014

4 Triggers

When a string is sent to a translator node, by an assertion or a command, the node may
emit NodeBrain commands. Emitted commands executed in the context of the translator
node. To direct a command to another node, a context prefix is required on the command
within the translator file.

Translator NodeBrain Module 11

Index December 2014

Index
A E
assertions............... i 9 EXPIESSIONS . ..ottt e e
C

N
Commandsiiiiiiiii i 9
Concepts . ..o 1 node commands ...
D T
Define. ... 9 triggers ,,
define translator............. 9 TUEOTIAL « « o o oo e e

Translator NodeBrain Module

13

	Concepts
	Tutorial
	Foreign Text
	Translator File
	Rule File Using Translator Node
	Lost in Translation

	Commands
	Define
	Assertions
	Cell Expressions
	Node Commands

	Triggers
	Index

