
NodeBrain Language

Release 0.9.02

NodeBrain Language
August 2014
NodeBrain Open Source Project

Release 0.9.02

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2014-02-16 Title: NodeBrain Language
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Source Project

This document replaces NodeBrain Language Reference, first published 2005-05-
13 in support of release 0.6.3 and updated to cover releases through 0.8.15.

Release 0.8.16
• Included show command option list.

2014-02-16 Release 0.9.01
• Changed the representation of False from 0 to ! in logic tables

Preface

This document describes the NodeBrain language. It is intended for application program-
mers familiar with concepts covered in the NodeBrain Guide. If you are more comfortable
learning by example, you should begin with the NodeBrain Tutorial and reference this doc-
ument as needed. Although this is a reference document, we’ve made an effort to introduce
topics in a logical sequence for those who choose to read it from front to back.
Release 0.9.00 introduces some minor incompatibilities with prior versions.
1. The value False is no longer represented by the number zero, 0. An exclamation point,

!, is now used to represent False, which is different than any number or string. In cases
where "!a" is used to test or assert False, the rules will perform as expected. However,
in cases where you have written rules using "a=0" to test or assert False, version 0.9.00
will break your rules until modified. You will also run into trouble in cases where True
or False are used in symbolic substitution or input from a script with an expectation
that False is prepresented by zero. This change also breaks check scripts since False is
displayed differently, requiring changes to check lines to resolve. Before upgrading to
0.9.00 you should test the impact of this change on your rule sets.

2. Internal changes may alter the order in which rules fire in response to a given assertion
or alert. Although warned under prior releases that the firing order is unpredicable,
you may have rules that are unintentionally sensitive to a change in firing order. This
can also break check scripts, requiring a reordering of check lines to resolve.

3. Check scripts that verify output of the show command will break because terms are
now displayed alphabetical, and there are other minor changes to the format.

See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Guide - Information on using nb
NodeBrain Tutorial - A gentle introduction to nb and the rule language
NodeBrain Language - Rule language syntax and semantics
NodeBrain Library - C API

Caboodle NodeBrain Kit - A framework for managing rules
System NodeBrain Kit - A small sample application

www.nodebrain.org

Document Conventions

We use a modified BNF (Backus Neur Form) notation to describe the syntax of the Node-
Brain language, as illustrated by the following example.� �
Syntax

assertCmd ::= (assert s* | ‘) [assertionList] [; [comment]] •
assertionList ::= cellAssertion { , cellAssertion }
cellAssertion ::= cellIdentifier (= | ==) cellExpression | [! | ?] cellIdentifier
cellIdentifier ::= identifier | [identifier] ([cellist])
cellList ::= cellExpression { , cellExpression }
 	
Meta-symbols have a special meaning, except when in bold font where they represent them-
selves as symbol within the language.

::= is defined as
| or
() sub-expression---e.g., (happy | sad) day
[] optional expression---0 or 1 - e.g., [really] happy
{ } repeating expression---0 or more - e.g., { really } happy
"" literal string---e.g., | () etc. (prefer bold font)

We deviate from BNF in the distinction between terminal symbols and syntax rule iden-
tifiers. Instead of enclosing syntax rule identifiers between angle brackets (<>), we use a
different font for identifiers and terminal symbols.

expression Italics for syntax rule identifiers
assert Bold font for symbols of the language (terminal symbols)

To emphasize the importance of white space or an end-of-line character, we use special
symbols.

s* White space identifier
• End-of-line identifier (LF | CR | null character)

Sometimes we get a bit lazy and leave rule identifiers undefined if it seems obvious, or more
often because they are defined elsewhere in the document. We also assume a terminating
character does not exist within the construct it terminates. In the following example, we
assume no character is a quote.

"{ character } "

We also don’t bother to quote our literal quotes. Bold quotes with a space on both sides
are literal quotes—symbols of the language, not meta-symbols. When quotes are used to
convert a meta-symbol into a literal symbol, it is clear by the spacing and the font.

"{" Literal brace

We are phasing out this use of meta-symbol quotes by simply using bold font to identify
literals.

{ Literal brace
{ Meta-symbol

The following rules describe the syntax of NodeBrain’s modified BNF.� �
Syntax

rule ::= identifier ::= expression
expression ::= term { s* | s* term }
term ::= factor [s* term]
factor ::= identifier | spaceIdentifier | eolIdentifier | terminal |

subExpression | optionalExpression | repeatExpression
identifier ::= alpha { alpha }
alpha ::= a-z | A-Z
spaceIdentifier ::= s* Represents one or more space characters
eolIdentifier ::= • Represents end-of-line character
terminal ::= string | " string " | boldString
string ::= character { character }
boldString ::= String in bold font
subExpression ::= (expression)
optionalExpression ::= [expression]
repeatExpression ::= { expression }
 	
In examples, we sometimes use an ellipsis (. . .) to mean "blah blah blah" in a place that
is not the focus of the example. You must replace ". . ." with valid syntax if you want to
experiment with the example.

define r1 on(...) a=5;
define goldenRule on(others) ...; # as you would have them do onto you

Sometimes commands that must be coded on a single line in interactive mode are shown
as multiple lines in an example. This is indicated by ending a line with a back slash (\),
which is recognized in rule files as a line continuation.

define r1 on((a=5 and b=7) or (c=2 and d=17)): ...
{on(a=2);(mo,we,fr):-dir; }

Table of Contents

1 Language Concepts . 1
1.1 String . 1
1.2 Number . 1
1.3 Truth . 1
1.4 Formula . 2
1.5 Cell . 2
1.6 Term . 3
1.7 Condition . 3
1.8 Rule . 5
1.9 Sequence Rules and Correlation Threads . 6
1.10 Command Processing . 7
1.11 Cell Evaluation . 8
1.12 Cycles and Rule Conflicts . 12
1.13 Nodes and Node Modules . 12

2 Identifiers . 15
2.1 Term Identifiers . 15
2.2 Glossaries . 16
2.3 Dictionaries . 16
2.4 Contexts . 17
2.5 Literal Identifiers (Strings and Numbers) . 18

3 Formulas . 19
3.1 Relational Operators . 19
3.2 Trinary Logic Operators . 20
3.3 Conditional Operators . 22
3.4 Enabled Monitoring Operators . 24
3.5 Value Capture Operators . 25
3.6 Flip-flop Operator . 26
3.7 Time Operator . 27
3.8 Delay Operators . 28
3.9 Node Sentence Formulas . 30

4 Time Expressions . 33
4.1 Time Expression Concepts . 33

4.1.1 Boolean Function of Time . 34
4.1.2 Time Interval Set . 34
4.1.3 Partitioned Set . 34
4.1.4 Normal Set . 35
4.1.5 Functions . 35
4.1.6 Parameters . 36

NodeBrain Language i

4.1.7 Operators . 36
4.1.8 Concept Review . 37

4.2 Indexed Selection . 37
4.2.1 Index Lists . 38
4.2.2 Index Ranges . 38
4.2.3 Spanned Index Ranges . 38

4.3 Interval Selection Parameters . 38
4.3.1 Parameter Lists . 40
4.3.2 Range Parameters . 40
4.3.3 Span Parameters . 40
4.3.4 Parent Parameters . 41
4.3.5 Combining Range, Span, and Parent Parameters 42

4.4 Time Functions . 42
4.4.1 Millennium, Century, Decade, Year . 42
4.4.2 Quarter, Month, January through December 43
4.4.3 Week, Day, Sunday through Saturday . 44
4.4.4 Hour, Minute, Second . 44

4.5 Prefix Operators . 45
4.5.1 Conflict . 45
4.5.2 Connect . 46
4.5.3 Partition . 46
4.5.4 Not . 46
4.5.5 Overlap . 47
4.5.6 Normalize . 47
4.5.7 Unique . 47

4.6 Infix Operators . 47
4.6.1 Union . 48
4.6.2 Selection . 49
4.6.3 Rejection . 49
4.6.4 Until . 49
4.6.5 And . 50
4.6.6 Or . 50
4.6.7 Xor . 50

4.7 Time Sequences . 51
4.8 Pulse Conditions . 52

5 Rules . 53
5.1 Simple Rules . 53
5.2 Sequence Rules . 56

5.2.1 Sequence Assert Statement . 58
5.2.2 Sequence Command Statement . 59
5.2.3 Sequence Publish Statement . 59
5.2.4 Sequence WAIT Statements . 59
5.2.5 Sequence ON and ONIF Statements . 59
5.2.6 Sequence IF Statement . 60
5.2.7 Sequence Repeat Statement . 60
5.2.8 Sequence Rule Deficiencies . 60

ii NodeBrain Language

6 Commands . 61
6.1 Alert . 61
6.2 Archive . 63
6.3 Assert . 63
6.4 Declare . 64

6.4.1 Identity Declaration . 64
6.4.2 Calendar Declaration . 65
6.4.3 Module Declaration . 65
6.4.4 Skill Declaration . 67

6.5 Define . 68
6.5.1 Cell Definition . 69
6.5.2 Nerve Definition . 69
6.5.3 Node Definition . 70
6.5.4 If-Rule Definition . 71
6.5.5 On-Rule Definition . 71
6.5.6 When-Rule Definition . 72
6.5.7 Macro Definition . 73

6.6 Disable . 74
6.7 Enable . 75
6.8 Exit . 75
6.9 Forecast . 76
6.10 Load . 77
6.11 Query . 78
6.12 Rank . 78
6.13 Set . 79
6.14 Show . 81
6.15 Source . 82
6.16 Stop . 82
6.17 Undefine . 82
6.18 Use . 83
6.19 Windows . 84

6.19.1 showenv . 84
6.19.2 createService . 84
6.19.3 deleteService . 85
6.19.4 startService . 85
6.19.5 stopService . 85

7 Special Symbol Commands 87
7.1 # (Comment) . 87
7.2 > (Prefix) . 87
7.3 ‘ (Assert) . 87
7.4 ^ (Output Message) . 87
7.5 - or = (Servant) . 88
7.6 $ (Substitution) . 91
7.7 % (Directive) . 92

NodeBrain Language iii

8 Source File Directives . 93
8.1 %assert Directive . 94
8.2 %default Directive . 94
8.3 %if Directive . 95
8.4 %include Directive . 96
8.5 %quit Directive . 96
8.6 %use Directive . 97
8.7 \ Line Continuation Directive . 97

9 Translators . 99
9.1 Encapsulation Symbols . 100
9.2 Statement Overview . 102
9.3 Projection Expressions . 104
9.4 C Program Comparison . 105
9.5 Flow Control Statements . 107
9.6 Translation Tables and Trees . 110
9.7 Statement Reordering . 112
9.8 Transactions . 114
9.9 Translator Quick Reference . 115

10 Symbolic Substitution . 117
10.1 Preprocessor Substitution . 118
10.2 Substitution Command . 118
10.3 Cell Definition Substitution . 120
10.4 Cell Value Substitution . 121
10.5 Macro Substitution . 121

Appendix A. Special Symbols 123

Appendix B. Transitional Features 127
B.1 Experimental Features . 127
B.2 Deprecated Features . 128
B.3 Obsolete Features . 128

Index . 131

iv NodeBrain Language

Chapter 1: Language Concepts August 2014

1 Language Concepts

This chapter introduces some basic concepts of the NodeBrain language. It is intended
as an overview to provide a foundation for understanding, not as a rigorous and complete
description. Most of these topics will be covered in more detail in later chapters.

1.1 String

A string is stored internally as a null terminated sequence of characters. You represent a
string by enclosing a sequence of character in quotes.

"abc"
"This is a string."

There are no string manipulation operators or functions in NodeBrain, although symbolic
substitution is supported and enables symbolic command construction. String comparisons
and regular expression matching is supported. (On Windows, you will need to install a
regular expression library. Testing has been done with librxspencer.lib, which you can
obtain from gnuwin32.sourceforge.net package RegEx-Spencer.)

A<"george" [String comparison]
A~"^abc.*d+$" [Regular expression match]

1.2 Number

Numbers are stored internally as floating-point values. You represent numbers with a
sequence of decimal digits with an optional plus or minus sign, decimal point, and exponent.

127
-3.23456e+10
4.5
+7

Addition (+), subtraction (-), multiplication (*), and division (/) operators may be used for
calculation.

5*2+10
21/3-2

Some common numeric functions are also recognized by the interpreter. Examples are
shown in the table below. A complete list of built-in functions is provided later.

Function Call Example Result
mod(45,2) 1
floor(16.2345) 16
exp(35.5) e35.4

1.3 Truth

The logical value of True can be represented by any number or string. Special symbols are
used to represent the logical values of False and Unknown.

NodeBrain Language 1

August 2014 Chapter 1: Language Concepts

Value Logical
? unknown
! false
1 true
0 true
"abc" true
27 true
-5.4 true

This deviates from the common practice of using zero to represent false, with the goal
of enabling operators to discriminate against False without discriminating against 0. For
example, the formula A false "abc" evaluates to the value of A unless it is False, in which
case it evaluates to "abc". If False were represented by 0, this formula could never return
0, and any formula that could return 0 could not avoid having its value interpreted as false.

1.4 Formula

A formula is a simple value (e.g. number, string, False, and Unknown), or an expression
that computes a value.

1.5 Cell

A cell is a container of both a value and a formula from which the value is computed. For
simple cells, the formula and value are identical.

Cell Definition Cell Value
"abc" "abc"
0 0
? ?

For more complex cells, the formula includes references to operators that derive values from
the value of other cells (operands). This concept is illustrated below with multiplication (*)
and addition (+) operators.

Cell Definition Cell Value
5*2 10
10+5 15

A formula is a unique identifier of a cell. In other words, only one cell exists for a given
formula. Any number of cells may reference a given cell. In the example above, the two
complex cells, (5*2) and (10+5), reference three simple cells (2, 5, and 10). A complex cell
may reference other complex cells. For example, the definition below creates a cell that
references the existing simple cell 5 and the existing complex cell (5*2).

Cell Definition Cell Value

2 NodeBrain Language

Chapter 1: Language Concepts August 2014

5*2+5 15

1.6 Term

In general, a term is an identifier used to represent knowledge. For now, let’s look at
examples of cell terms. These terms reference cells and are themselves cells. In the set
of examples below, you assert values for the terms A through E and "fred" by the cell
expressions following the equal symbol (=) or double equal symbol (==). A single equal
references the value of the cell expression at the time of the assertion. A double equal
references the value of the cell expression from the time of the assertion and into the future.
In this example, the value of E will automatically change if A or D changes.

assert A=3,B="abc",C=1.5,D=3*5,E==A*D,fred=mod(E,17)+25.67;

It is best to think of a term as an alias, that is, a cell that simply references another cell. A
term, like all cells, can be referenced by other cells, and the value of a term is the value of
the cell it currently references. So A=3, D=15, and E=45 based on the definitions above.
You change a term’s value indirectly by changing the definition—the cell reference. Here
you change the values of A and D to the values of 4 and 3*7 respectively.

assert A=4,D=3*7;

The new values are A=4, D=21, and E=84. Notice the value of E changed automatically as
a result of the change to A and D. This is an important concept in NodeBrain. When you
assert that E==A*D, you didn’t just assign E the current value of A*D (45), you defined
a formula for computing E.

1.7 Condition

A condition is a cell for which the value is reduced to True, False, or Unknown. All values
other than False (!) and Unknown (?) map to True when interpreted as a condition. This
means any cell may be used as a condition or an operand within a condition.
Some operators are designed specifically for use in conditions. Examples include relational
operators (=, >, >=, <, <=, and <>) and trinary logic operators (&, |, and !). The words
"and", "or" may be used as alternatives to & and | respectively.

a>1 [a greater than 1]
b<>a [b not equal to a]

NodeBrain Language 3

August 2014 Chapter 1: Language Concepts

a & !b [a and !b]
a and !b [a & !b]

Trinary logic operators extend Boolean logic, which has only True and False values, to
include a third value of Unknown. The following table shows this extension for the logical
AND (&) operator. The symbol !! is a special case of True that is returned by some logical
operators.

A B A & B
! ! !
! !! !
! ? !
!! ! !
!! !! !!
!! ? ?
? ! !
? !! ?
? ? ?

Relational operators like >, <, and = always return Unknown when one of their operands
is Unknown, and when a number is compared to a string.

Now let’s look at an example.

assert X==(A>B & C=5);
assert A=7;
assert C=4;

If this is all the information you have, then B is Unknown; that is, B=?. However, the value
of B is not needed to determine that X=! because (C=5) is ! and (? & !) is !.

In procedural languages, conditional expressions are evaluated when the statement contain-
ing the expression is executed. In NodeBrain, individual cells are evaluated when the value
of any referenced cell changes. (This is similar to cells in a spreadsheet.) The following
assertion will not cause evaluation of X because the value of A does not change—it is still
7 after the assertion.

assert A==C+3;

If you then make the following assertion, A becomes 8 (5+3) and X becomes 1. To clarify,
X is the result of (8>1 & 5=5) or (1 & 1), which is 1.

assert C=5,B=1;

In addition to the common operators used within conditions, NodeBrain has special oper-
ators with memory and time awareness.

A ^ B [flip-flop]
team(A,B,C) [node sentence formula]
~(h(4).su[3]jan) [time condition]
A ~^(10m) [time delay]

We won’t go into the details of these operators here, but they are important features of the
language to cover later.

4 NodeBrain Language

Chapter 1: Language Concepts August 2014

1.8 Rule

Rules are used to define the conditions you want NodeBrain to monitor and the desired
actions or responses to specific conditions. There are three types of rules: on, when, and
if. Other than the type identifier, the syntax is the same.

define term on(condition) assertion: command

define term when(condition) assertion: command

define term if(condition) assertion: command

An on rule will fire any time the condition transitions to a True value from a non-True
value (False or Unknown). When a rule fires, the action may include an assertion and a
NodeBrain command. If a condition is True at the time a rule is defined, this does not
qualify as a transition to a True state. In that case, the condition must first transition to
False or Unknown and then transition to True.

A when rule behaves just like an on rule, except it only fires once. After a when rule fires,
it is removed from the interpreter’s memory.

The syntax for the optional assertion clause is just like the syntax illustrated for the assert
command, that is, a set of assignments separated by commas. This clause is interpreted
with the define statement. An optional command follows the colon (:). This command is
not interpreted until the rule fires and is re-interpreted each time the rule fires.

define r1 on(a=1 and b=2) c="xyz",x=25;
define r2 on(c="xyz"): command2

define r3 when(x>20) e=5.246: command3

define r4 if(a=1 and b=2): command4

define r5 if(a>17); # This rule has no action

The value of rule conditions changes in response to assert and alert commands and the
system clock for time conditions. Except for the verb, the assert and alert commands
have identical syntax as illustrated by the following examples.

assert a=1,b=2;
alert a=1,b=2;

For on and when rules, no distinction is made between assert and alert. For the purpose
of condition value update, this is also true of if rules. However, the firing mechanism is
different for if rules. An if rule will only fire on an alert command and it will always fire
when True. It does not require a transition from another state.

You may think of an alert command as a representation of an "event" and the if rule as an
"event monitoring" rule. You may also think of an assert command as a representation of
a "state," and the on rule as a "state monitoring" rule. However, remember that conditions
for all rules respond to both assert and alert in a consistent way. This means if rules
may be used for "stateful event monitoring," where conditions are based on asserted states
as well as event attributes provided by alerts.

The when rule shows no preference toward either of the concepts of "state" or "event." A
when rule may be defined to watch for a specific "state" or "event," take some action, and
disappear.

NodeBrain Language 5

August 2014 Chapter 1: Language Concepts

A set of rules may be written to implement a state transition table.

define r1r on(state=1 and red) state=2: actionA

define r1g on(state=1 and green) state=3: actionB

define r1b on(state=1 and blue) state=4;
define r2g on(state=2 and green) state=3;
define r3r on(state=3 and red) ?state: actionC

define r4y on(state=4 and yellow) state=5: actionD

define r5r on(state=5 and red) ?state;
define r5g on(state=5 and green) state=1;

1.9 Sequence Rules and Correlation Threads

A sequence rule in NodeBrain is a procedural construct expressed within a single command
line enclosed in braces, "{. . .}".

{=8;on(a=2);=5;10m;if(b=7)‘c=3; }

The example above reads like this:
1. Assert the value of the rule to be 8.
2. Wait for a=2 and then assert the value of the rule to be 5.
3. Wait for 10 minutes.
4. If b=7, then assert c=3;

A sequence rule may be used as a command or a cell expression.
> {on(a=1 and b=2)‘c=7,b=4;on(a=2 and b=3)‘c=2; } # command

6 NodeBrain Language

Chapter 1: Language Concepts August 2014

> assert x=={=8;on(a=2);=5;10m;=9; }+b; # cell expression

You can think of sequence rules (like all NodeBrain rules) as running concurrently under
separate threads. These are called "correlation threads" because the primary purpose is to
correlate a sequence of events.

The previous section showed how simple on rules can be used to implement a state table
using a state variable. With sequence rules, a statement pointer provides a built-in state
variable. The rule below responds to a sequence of green, blue, and red conditions.

{on(green);on(blue);on(red);action;}

Sequence rules are covered in more detail in Chapter 6, Rules.

1.10 Command Processing

The NodeBrain language is a declarative language. With the exception of the %if source
file directive and sequence rules, it does not have procedural flow of control constructs
like IF-THEN-ELSE, CASE, WHILE, UNTIL, and FOR. It does not have sequential compound
statements like "DO; ... END;" or "{...}". It does not support conventional user-defined
functions or subroutines. It is not a general purpose programming language like C or Perl.
NodeBrain is a special purpose declarative language. A NodeBrain programmer specifies
rules that are similar to IF-THEN statements. However, the if conditions in NodeBrain,
unlike those in procedural languages, are "constantly" being evaluated. There is no concept
of "order" to the evaluation of rules.

On the other hand, commands are "executed" in the order they are presented to the inter-
preter. It may be helpful to think of a NodeBrain interpreter as a transaction processor.
Each statement is a transaction that does one or more of the following:

• Update control variables
• Define or update rules
• Update cells
• Display the contents of memory

If you think of a NodeBrain interpreter as a transaction processor, you can think of the
set of data elements known to the interpreter as a primitive database. If you think of
the data elements as simple "factual" knowledge and the cells and rules as more complex
knowledge, you can think of the interpreter as a knowledge base. To a large extent, however,
the interpreter’s memory is volatile. When a NodeBrain process terminates, everything it
"learned" (has been told) is forgotten. This can be overcome, to some extent, by writing

NodeBrain Language 7

August 2014 Chapter 1: Language Concepts

rules that record information to *.nb files and load them at startup time. (But we’re getting
ahead of ourselves here.)

There are several ways to get commands to the interpreter: standard input file, queue files,
TCP/IP socket connections, source files, shell command output, and translation of log files
or other files with a syntax foreign to NodeBrain. In each of these cases, the commands are
processed sequentially as presented to the interpreter.

In the previous section, you saw how commands are presented to the interpreter by itself
when rules fire. In this case, you can make no assumptions about the sequence in which
commands will be presented to the interpreter as rules fire. But there is some structure to
the process described in the next section.

1.11 Cell Evaluation

Now you will see more closely how NodeBrain reacts to assertions. As described earlier,
assertions are made with assert and alert commands. You’ll use assert commands and
on rules in the examples here.

Suppose you have a brain with the following definitions.

define R1 on(A=1 and B=2);
define R2 on(A=1 and B=3);
define R3 on(C=3 and A=1 and B=2);

If you display the conditions your brain is monitoring, it looks like the following. Seven
cells are monitoring conditions. The value of each of these cells is unknown because the
values of the terms a, b, and c are unknown.

1 R[2]L(1) = ? == (A=1)
2 R[1]L(1) = ? == (B=2)
3 R[2]L(2) = ? == ((A=1)&(B=2))
4 R[1]L(1) = ? == (B=3)
5 R[1]L(2) = ? == ((A=1)&(B=3))
6 R[1]L(1) = ? == (C=3)
7 R[1]L(3) = ? == ((C=3)&((A=1)&(B=2)))

The R[2] on the first line tells you there are two references to the cell (A=1). This is
interesting because you referenced (A=1) three times in the rules. The explanation is
that rule R3 did not create a new reference to (A=1); it created a second reference to
((A=1)&(B=2)), which itself holds one of two references to (A=1). The other reference is
held by ((A=1)&(B=3)).

8 NodeBrain Language

Chapter 1: Language Concepts August 2014

The L(1) on the first line tells you (A=1) is a level 1 cell. Notice the second line shows a
level 2 cell ((A=1)&(B=3)). This is an and cell referencing two level 1 cells: (A=1) and
(B=3). Let’s look at it graphically. Now the levels and references make sense.

Within the internals of the NodeBrain interpreter you say that cell (A=1) has "subscribed"
to changes in the value A, and that the cell ((A=1)&(B=2)) has subscribed to changes in
the value of (A=1) and to the value of (B=2). Let’s look at what happens when you make
an assertion about A and B.

NodeBrain Language 9

August 2014 Chapter 1: Language Concepts

assert A=2,B=3;

The impact of the changes to A and B are realized level by level. When A is assigned 2,
this is a change, so A publishes a change to the (A=1) cell. This simply means (A=1) is
scheduled for evaluation. When B is assigned 3, this is also a change, so B publishes a
change to (B=2) and (B=3) because both have subscribed to changes in B.

After completing the assignments of the assert command, the interpreter enters an evalu-
ation phase starting at level 1. There is no importance to the order in which (A=1), (B=2)
and (B=3) are evaluated. Let’s pretend they are evaluated in the order just listed. When
(A=1) is evaluated, you discover it is False. This is a change, so both ((A=1)&(B=2)) and
((A=1)&(B=3)) are scheduled for evaluation. When (B=2) is evaluated, it too is False and
the change is published to ((A=1)&(B=2)), which is already scheduled for evaluation. When
(B=3) is evaluated, it is found to be True and the change is published to ((A=1)&(B=3)),
which is also already scheduled for evaluation.

After completing level 1 evaluations, the interpreter repeats the process at level 2 and then
level 3. All level 2 and level 3 cells are found to be False, so no rules fire.

Notice that condition (C=3) is still unknown but not necessary to determine that
((C=3)&((A=1)&(B=2))) is False.

Now suppose you make the following assertion.

10 NodeBrain Language

Chapter 1: Language Concepts August 2014

assert a=1;

When A is assigned the value of 1, the interpreter schedules (A=1) for evaluation. If you
were to trace the evaluation process, it might look like this.

L(1): (A=1), True, This is a change so schedule subscribers for evaluation
L(2): ((A=1)&(B=2)), (True & False), False, no change
L(2): ((A=1)&(B=3)), (True & True), True, schedule R2 to fire

Notice it was not necessary to evaluate any condition directly referencing B or
C because they did not change. Furthermore, it was not necessary to evaluate
((C=1)&((A=1)&(B=2))) because the value of the sub-expressions (C=1) and
((A=1)&(B=2)) never changed. The questions the interpreter had to answer were:

1. Is (A=1)?

2. Is (True and False)?

3. Is (True and True)?

If you next assert that B=2, rule R1 will fire because (B=2) will be True, making
((A=1)&(B=2)) True. Rule R2 will reset because (B=3) will be False, making
((A=1)&(B=3)) False.

An assertion that C=3 will cause R3 to fire because ((A=1)&(B=2)) is already True.

An assertion that B=3 will cause R2 to fire again, and both R1 and R3 to reset.

NodeBrain Language 11

August 2014 Chapter 1: Language Concepts

1.12 Cycles and Rule Conflicts

There are two ways to begin a command cycle:

1. A command is presented to the interpreter by some means other than a rule firing (e.g.,
a socket connection), or

2. An alarm clock goes off triggering an internal assertion or alert.

Once a command cycle begins, everything that happens until the interpreter is ready to
accept another input command occurs within one command cycle.

Just as cells are scheduled for evaluation as described in the previous section, rules are
scheduled to fire when their conditions are satisfied. Once NodeBrain schedules a rule to fire,
it is committed to it. It simply starts stepping through the list of rules that are scheduled to
fire and performs the specified actions. These actions may schedule new cell evaluations. It
is quite possible that the actions of one rule will schedule cell evaluations that, if performed
immediately, would change the state of other rule conditions before they actually fired.
However, NodeBrain’s cell evaluation algorithm doesn’t care; it simply performs the actions
of all scheduled rules. Then, if new cell evaluations have been scheduled, it starts a new
"evaluation cycle," starting at level 1 and working up to the rule level. At the end of
an evaluation cycle, if no new cell evaluations have been scheduled, the command cycle is
complete.

Now consider the following rule set.

define R1 on(!A) A;
define R2 on(A) !A;

A command cycle, as described above, would be infinite if you asserted that !A with this
rule set. To avoid this possibility, NodeBrain enforces an arbitrary limitation. No rule
is allowed to fire more than once in a given command cycle. Under this limitation, a !A
assertion will cause R1 to fire, which will assert A, causing R2 to fire, which will assert !A
and the command cycle will end.

You can still have conflicts. Consider these rules.

define R1 on(A=1) B=2;
define R2 on(A=1) B=3;

What is the value of B after an assertion that A=1? All you can say is that the rule that
fires last wins and, in general, you can’t predict the order the rules will fire. You are advised
not to create rules like this if you can help it. Currently NodeBrain does not prevent or
identify this condition. It is fine and even desirable to allow a given term to change values
more than once in a command cycle, so NodeBrain doesn’t place a limitation on this like it
did on rules firing more than once. But a future version may include logic that prevents (or
at least detects) terms changing values multiple times in a single evaluation cycle’s action
phase.

1.13 Nodes and Node Modules

A node is an object with special knowledge and the skill to use it within the framework
provided by NodeBrain. The skill is provided by a node module and the knowledge is either
asserted using NodeBrain commands or obtained from an external source.

12 NodeBrain Language

Chapter 1: Language Concepts August 2014

A node module implements a type of node by providing functions (methods) that NodeBrain
calls to handle specific tasks like assertion, evaluation, and command interpretation. For
example, suppose you have a node module named "myskill." You could define a node named
"Shania" and reference it as shown below.

define shania node myskill;
define r1 on(shania("abc",20)) a=7;
assert shania(1,3,5)=30,shania(5,"ready");
shania:This is a message handled by myskill
shania(1,"xyz"):This is another message with arguments

To understand the evaluation of shania("abc",20) and the assertions shania(1,3,5)=30 and
shania(5,"ready") requires familiarity with the node module named "myskill" used to im-
plement shania. NodeBrain simply asks the node module to handle the assertions and
evaluations. When the value the node module returns for shania("abc",20) transitions to
true, rule r1 fires and NodeBrain takes the action of asserting a=7.
To send a command (message) to a node, you begin a command with the node name
followed by an optional argument list, followed by a colon (:). If a node module implements
the command method, the argument list and text following the colon (:) are sent to the
skill’s command method. The interpretation of node commands is entirely up to the node
module.
Manuals for modules distributed with NodeBrain are available at http://nodebrain.org. See
the NodeBrain Library manual for information needed to write your own node modules.

NodeBrain Language 13

Chapter 2: Identifiers August 2014

2 Identifiers

Identifiers are used to reference objects ("things") by name, a concept you are familiar
with from other programming languages. When the interpreter encounters an identifier, it
searches a dictionary of terms to locate the referenced object. For a complete identifier, the
search begins at a specified root glossary. For a contextual identifier, the search begins at
a glossary understood by the context in which the identifier is used.� �
Syntax

identifier ::= completeIdentifier | contextualIdentifier
completeIdentifier ::= (% | @) [term] [. contextualIdentifier]
contextualIdentifier ::= term { . term }
term ::= simpleTerm | quotedTerm
simpleTerm ::= alphaChar { alphaChar | digitChar }
alphaChar ::= a-z | A-Z |
digitChar ::= 0-9
quotedTerm ::= ’ { character } ’
 	
2.1 Term Identifiers

A term is a word associated with both a definition and a value. A simple term is an
alphanumeric string starting with an alpha character, where you define an alpha character
as any letter of the alphabet (upper or lower case) or the underscore character. The following
are valid terms.

APPLE
Orange
_blue
really_sad
happyCamper
hikerBikerSurfer2
three4five

When you use a term like a common variable, you assign a value using an assert statement
with a single equal symbol.

assert orange="You glad we didn’t say banana?";

You can also use a term like a function by assigning a definition. This requires a double
equal symbol.

assert Thomas==(ToB or !Tob);

That is the question, now what is the answer? It is explained later that Thomas is 1 (true)
when ToB is true or Tob is false, and otherwise Thomas is false or unknown. You really don’t
want to get into a painful discussion about logical expressions here. The point is simply that
a term has simultaneously a definition and a value, both of which are NodeBrain objects.

NodeBrain Language 15

August 2014 Chapter 2: Identifiers

Terms starting with an underscore () are reserved terms the interpreter makes up. You
may reference these terms, but you don’t get to invent them. (Just wanted to underscore
the terms for using underscore terms.)
When you want to use a term that violates the syntax of a simple term, you may use a
quoted term. This enables the use of recognizable names from foreign contexts as terms
within NodeBrain rules. Any typable character, except a single quote (apostrophe, ’), may
be used between single quotes. (NodeBrain does not have an escape sequence for special
characters.) The following are valid quoted terms.

’/var/opt/goofy’
’http://www.nodebrain.org’

It is important not to confuse a quoted term with a string. A quoted term is the name of
something. A string is the name of itself. The following example asserts a string value for
a quoted term.

assert ’http://www.nodebrain.org’="http://nodebrain.sourceforge.net";

2.2 Glossaries

A glossary is a set of terms. Every term may have a glossary of subordinate terms. You
reference a subordinate term by following a term with a period and the subordinate term.

term.subordinateTerm

This provides a way to organize information. For example, you might assert some informa-
tion about employees.

assert employee.’Jane Dough’.salary=200000;
assert employee.’Jane Dough’.title="Software Engineer";
assert employee.’Jane Dough’.skill.programming.language.perl="expert";
assert employee.’John Fawn’.salary=80000;
assert employee.’John Fawn’.title="Software Apprentice Toady";
assert employee.’John Fawn’.skill.programming.language.perl="novice";

Oops, bad example. Let’s not monitor employees. Well, the concept also applies to things
you do want to monitor. Just replace "employee" with "computer" "application" or "pro-
cess" or something else and then define the appropriate subordinate terms.

2.3 Dictionaries

A dictionary is a complete hierarchy of terms and glossaries. Separate dictionaries are used
for rules, calendars, modules, skills, and so on. This simply means there are multiple name
spaces. Most terms are defined in the rule dictionary, explicitly with the define command
or implicitly by referencing an undefined term.

define A cell X+Y/Z; # A is define explicitly---X, Y, and Z implicitly
assert B==X*Y; # B is define implicitly

Terms must be defined explicitly in all other dictionaries using the declare command.
declare lunar module ./nb_moon.so;

When the interpreter needs to look up a term, the dictionary is understood by the syntax.
assert x=a+b; # x, a, and b are all looked up in the rule dictionary
define moony node lunar; # lunar is looked up in the skill or module dictionary

16 NodeBrain Language

Chapter 2: Identifiers August 2014

2.4 Contexts

A context is a concept associated with nodes and the rule dictionary. Commands are
interpreted within a given context. NodeBrain searches for terms up or down the glossary
hierarchy starting from the glossary of a given node. You create a new context whenever
you define a node.

define pie node;

You use a context prefix to tell the interpreter which node to use when interpreting a
command. A context prefix is an identifier with a trailing period followed by a blank.

identifier. verb body - statement with a context prefix
verb body - statement without a context prefix

Here you see two statements that would produce the same results, the second with a context
prefix ("pie. "). Notice the difference to the right of the verb assert.

assert pie.apple=5,pie.cherry=2,pie.pumpkin=8;
pie. assert .apple=5,.cherry=2,.pumpkin=8;

Defining nodes within a node creates a context hierarchy.
pie. define fresh node;
pie. define dayold node;
pie.fresh. assert .apple=1; # pie.apple=5; pie.fresh.apple=1;

Prefixing the first term of a context identifier with periods directs the interpreter to a
specific context relative to the current context.

.identifier - search the current context glossary

..identifier - search the parent context glossary

...identifier - search the grandparent context glossary

....identifier - etc.

When searching for a context identifier that is not period-prefixed, the interpreter searches
up the context hierarchy for the first term of the identifier, starting in the current context.
This search may be resolved on any number of levels up the context hierarchy. The in-
terpreter then resolves the remaining terms of the identifier by stepping down the glossary
hierarchy one term at a time.

pie.apple - find "pie" in current or above, and find "apple" in "pie"

You can see an unconstrained upward search by modifying the earlier example. These
modified commands are not equivalent in the specified order if "apple", "cherry", and
"pumpkin" are not already defined in "pie", but are defined at a higher level. In that case,
the first command would reference the higher level terms.

pie. assert apple=5,cherry=2,pumpkin=8;
assert pie.apple=5,pie.cherry=2,pie.pumpkin=8;

The @ symbol is used to reference the root-addressable context.
@. assert x=1,y=2;
assert @.x=1, @.y=2;

The context symbols, % and $, are used for contexts that contain special built-in terms or
terms that apply only to the scope of the current source file or macro expansion. These are
topics for other sections.

NodeBrain Language 17

August 2014 Chapter 2: Identifiers

2.5 Literal Identifiers (Strings and Numbers)

NodeBrain has two basic data types, string and number. NodeBrain uses a self-defining
identifier called a literal to reference a specific string or numeric value.� �
Syntax

literalIdentifier ::= stringLiteral | numberLiteral
stringLiteral ::= " { character } "
numberLiteral ::= [+ | -] integer [. integer] [e [+ | -] integer]
integer ::= digit{ digit }
digit ::= 0-9
 	
A string literal is, no surprise here, a sequence of characters enclosed in quotes. NodeBrain
does not support an escape sequence, so there is no way to include a quote in a NodeBrain
string object.

"process has failed"
"threshold of 5 reached"
"http://sourceforge.net"

Numbers are always stored as floating-point objects. The following numeric literal identifiers
all reference the same value.

2100 2.1e+3 21.0e2

A number must always start with a numeric digit (0-9) or a sign (+ or -). Here are some
more examples.

0.45 - notice the leading zero used to start with a digit
-3
-4.567e-4
-5e+21
+52

The interpreter does not reference the context or glossary hierarchies to resolve a literal
identifier. Instead, the interpreter uses hashing tables to manage string and number objects.
There is only one instance of a string object for any given string value. In the example below,
you see the string literal "abc" multiple times. In each case, the interpreter recognizes the
literal identifier as a reference to the same object—there is only one "abc" object. There
is also only one instance of the 2.5 object. The y and d terms are both associated with the
same value by pointers to the same memory location (the address of the 2.5 object).

assert x="abc",y=2.5,z="abc";
assert a="abc",b=5.345e+9,c="abc",d=2.5;

18 NodeBrain Language

Chapter 3: Formulas August 2014

3 Formulas

This chapter describes the syntax and semantics of cell formulas.� �
Syntax

cellFormula ::= basicFormula | conditionalFormula | switchedFormula
basicFormula ::= atomicFormula | relationalLogic | prefixLogic | infixLogic | delay-

Logic
atomicFormula ::= constant | cellTerm | nodeSentence | timeLogic | (cellFormula)
constant ::= string | number | ? | ! | !!
nodeSentence ::= nodeTerm (cellList)
cellList ::= cellFormula [, cellList]
timeLogic ::= ~ (timeExpression)
relationalLogic ::= atomicFormula relationalOperator automicFormula
relationalOperator ::= = | <> | < | > | <= | >=
prefixLogic ::= prefixLogicOperator atomicFormula
prefixLogicOperator ::= ! | !! | ? | !? | -? | +?
infixLogic ::= basicFormula infixLogicOperator basicFormula
infixLogicOperator ::= and | & | nand | !& | or | | | nor | !| | xor | |!& | ^
delayLogic ::= basicFormula delayLogicOperator (timeExpression)
delayLogicOperator ::= ~^ | ~^! | ~^?
conditionalFormula ::= basicFormula conditionalOperator basicFormula | conditionalElse
conditionalOperator ::= true | !! | untrue | false | ! | unfalse | known | unknown | ?
conditionalElse ::= conditionalFormula else [conditionalOperator] basicFormula
switchedFormula ::= thenSwitch | captureSwitch
thenSwitch ::= basicFormula then basicFormula
captureSwitch ::= basicFormula capture basicFormula
 	
Anyone familiar with high-level procedural languages will be comfortable with elements of
this formula syntax at first glance, but other elements may take a little more study. This is
partially because trinary logic has more possibilities than binary logic, and partially because
the language includes operators that maintain state, specifically designed for monitoring
applications.

There are a few symbols that may be interpreted as a constant, prefix operator, or infix
operator. Examples include ! and ?. They are recognized as constants when standing alone,
prefix operators when directly preceding a formula (not separated by a space), and an infix
operator when following a formula.

3.1 Relational Operators

Relational operators always return Unknown (?) when one or more of the operands is
unknown. When both of the operands are Known (K) and of the same type (number or
string), relational operators return true (!!) or false (!) as you would expect for equal, not
equal, less than, greater than, less than or equal, and greater than or equal.

? - Unknown K - Known

NodeBrain Language 19

August 2014 Chapter 3: Formulas

A B A = B A<>B A < B A > B A<=B A>=B
? ? ? ? ? ? ? ?
? K ? ? ? ? ? ?
K K A = B A <>B A < B A > B A<=B A>=B
K ? ? ? ? ? ? ?
Relational operators will accept operands of different types. However, NodeBrain arbitrarily
claims that numbers are less than strings and strings are less than objects of any other type.

n - number < s - string < . - any other type

A B A = B A<>B A < B A > B A<=B A>=B
s s A = B A<>B A < B A > B A<=B A>=B
s n ! !! !! !! ! !!
s . ! !! !! ! !! !
n s ! !! !! ! !! !
n n A = B A<>B A < B A > B A<=B A>=B
n . ! !! !! ! !! !
. s ! !! ! !! ! !!
. n ! !! ! !! ! !!
. . - - ? ? - -
Two objects of types other than number or string have an Unknown relationship, except an
object X (at a given address) is always equal to itself and never equal to an object Y (at a
different address).

A B A = B A<>B A < B A > B A<=B A>=B
X X !! ! ? ? !! !!
X Y ! !! ? ? ? ?
This means the relational operator = can be used to test for a specific object of any type.

3.2 Trinary Logic Operators

The trinary logic operators reduce their operands to one of three logical values (True,
False, and Unknown) and produce a result that is also one of these three values. False
is represented by an exclamation point ("!"), Unknown is represented by a question mark
("?"), and True is represented by an number or string. True operands are represented by
T in truth tables. A True result produced by these operators is represented by the number
one ("1").
There are six prefix operators as shown in the table below. Note that the inverse of Unknown
is also unknown. If you don’t know a value, you don’t know the inverse value.

Prefix Function Description
!A Not Normal Boolean NOT, without

change to Unknown.
?A Unknown True if Unknown, otherwise

False.

20 NodeBrain Language

Chapter 3: Formulas August 2014

!!A True True if True - converts any True
value to 1.

!?A Known True if not Unknown.
-?A Assume

False
False if Unknown.

+?A Assume
True

True if Unknown.

A !A ?A !!A !?A -?A +?A
! !! ! ! !! ! !
? ? !! ? ! ! !!
T ! ! !! !! !! !!

Infix operators support standard Boolean logic, but they are extended to support Unknown
values and True values other than !! in operands.

Infix Function Description
A && B Lazy AND B if A is True, else A
A & B AND Both A and B are True
A !& B NAND Not (A and B) - either A or B is

False
A || B Lazy OR B if A is False, else A
A | B OR Either A or B is True
A !| B NOR Not (A or B) - both A and B are

False
A |!& B XOR (A or B) and not (A and B)

In the following logic table T represents any True value while !! represents the special True
value.

A B A &&
B

A & B A !&
B

A ||
B

A | B A !| B A|!&B

! ! ! ! !! ! ! !! !
! ? ! ! !! ? ? ? ?
! T ! ! !! !! !! ! !!
? ! ! ! !! ? ? ? ?
? ? ? ? ? ? ? ? ?
? T ? ? ? !! !! ! ?
T ! ! ! !! !! !! ! !!
T ? ? ? ? !! !! ! ?
T T !! !! ! !! !! ! !

With respect to logic, there is no difference between the lazy and (&&) and normal and
(&), or the lazy or (||) and normal or (|). However, there can be a performance difference
under specific conditions. The lazy operators are provided for cases where the right operand
may be expensive to monitor. When the left operand alone provides enough information to
determine the result, the cell’s subscription for the right operand value is disabled. When

NodeBrain Language 21

August 2014 Chapter 3: Formulas

the left operand alone does not determine the result, the cell subscribes to the right operand
is enabled. There is overhead involved in enabling and disabling the cell’s subscription to
the right operand, so it is generally better to use the normal and and or operators. Only use
the lazy form when the left operand is relatively stable and the right operand is relatively
expensive.
Suppose you are monitoring a stream of events and one out of 1000 events
(EventType="abc") requires an expensive evaluation on two of the event attributes
(Attribute1 and Attribute2). If you use the normal and (&) as shown below, the
MyExpensiveLookup(Attribute1,Attribute2) condition is computed every time there is a
change to Attribute1 or Attribute2.

EventType="abc" & MyExpensiveLookup(Attribute1,Attribute2)

If Attribute1 or Attribute2 changes with almost every event, the right operand condition is
computed 1000 times more often than necessary. This is an ideal time to use the lazy and
(&&) to improve performance.

EventType="abc" && MyExpensiveLookup(Attribute1,Attribute2)

The lazy or (||) works the same way, except it is a False left operand that causes the right
operand to be computed.

HaveEnoughInfo || MyExpensiveLookup(Attribute1,Attribute2)

If you study the truth table above, you will notice shaded cells indicating when the lazy
operators provide a performance improvement in cases where the right operand is expensive.

3.3 Conditional Operators

Conditional operators replace a selected value of a condition with the value of another
condition. They are similar to IF-THEN-ELSE statements, but for the purpose of expression
evaluation only. Notice that "untrue" is not the same as "false", and "unfalse" is not the
same as "true".

Operation Description
A true B if A is True then B else A
A false B if A is False then B else A
A unknown
B

if A is Unknown then B else A

A untrue B if A is False or Unknown then B else A
A unfalse B if A is True or Unknown then B else A
A known B if A is True or False then B else A
When the left condition A is a conditional expression, a conditional operator applies no
differently, so you can apply a conditional operator to the result of a conditional operator.
The following expression returns the value of C if A true B is false. In other words, it
returns C if A is false, or if A is true and B is false.

A true B false C

A conditional operation may be extended using an else clause. Where the conditional
operator replaces two of the three possible truth values, an else can be used to replace the
third truth value.

22 NodeBrain Language

Chapter 3: Formulas August 2014

Operation Description
A untrue B if A is False or Unknown then B else A
A untrue B
else C

if A is False or Unknown then B else C

A unfalse B if A is True or Unknown then B else A
A unfalse B
else C

if A is True or Unknown then B else C

A known B if A is True or False then B else A
A known B
else C

if A is True or False then B else C

Where the conditional operator replaces only one of the three possile truth values, an else
replaces the other two.

Operation Description
A true B if A is True then B else A
A true B else
C

if A is True then B else C

A false B if A is False then B else A
A false B else
C

if A is False then B else C

A unknown
B

if A is Unknown then B else A

A unknown
B else C

if A is Unknown then B else C

The operators elsetrue, elsefalse, and elseunknown may be used to replace a single
truth value following a conditional operator that replaces a different single truth value.

Operation Description
A true B
elsefalse C

if A is True then B else if A is False then C else A

A true B
elsefalse C
else D

if A is True then B else if A is False then C else D

A true B
elseunknown
C

if A is True then B else if A is Unknown then C else
A

A true B
elseunknown
C else D

if A is True then B else if A is Unknown then C else
D

A false B
elsetrue C

if A is False then B else if A is True then C else A

NodeBrain Language 23

August 2014 Chapter 3: Formulas

A false B
elsetrue C
else D

if A is False then B else if A is True then C else D

A false B
elseunknown
C

if A is False then B else if A is Unknown then C else
A

A false B
elseunknown
C else D

if A is False then B else if A is Unknown then C else
D

A unknown
B elsetrue C

if A is Unknown then B else if A is True then C else
A

A unknown
B elsetrue C
else D

if A is Unknown then B else if A is True then C else
D

A unknown
B elsefalse C

if A is Unknown then B else if A is False then C else
A

A unknown
B elsefalse C
else D

if A is Unknown then B else if A is False then C else
D

Conditional expressions may be simplied when displayed. In the following examples the
expression on the left is replaced by the expression on the right.

A true A ==> A
A true B elsefalse B ==> A known B
A untrue B elsetrue C ==> A true C else B

3.4 Enabled Monitoring Operators

The enabled monitoring operator, then, is similar to the lazy AND, &&, and lazy OR, ||,
described in the previous section in that the left operand determines if the cell subscribes to
the right operand. However, the logic table is modified so the left operand simply controls
when the right operand is monitored. The cell value is always Unknown when the right
operand is not monitored and always the value of the right operand when it is monitored.
Prior to release 0.9.01 two operators were provided based on AND and OR. Because that
syntax was less intuitive, it is now deprecated and support will be dropped in a future
release.

Infix Function Description
A then
B

then B If A is True, else Unknown

A &~&
B

AndMon B If A is True, else Unknown [dep-
recated syntax]

!A then
B

then B If A is False, else Unknown

A |~| B OrMon B If A is False, else Unknown [dep-
recated syntax]

24 NodeBrain Language

Chapter 3: Formulas August 2014

?A then
B

then B If A is Unknown, else Unknown

A B A then B A &~& B A |~| B
! ! ? A ? A ! B
! T ? A ? A T B
! ? ? A ? A ? B
? ! ? A ? A ? A
? T ? A ? A ? A
? ? ? A ? A ? A
T ! ! B ! B ? A
T T T B T B ? A
T ? ? B ? B ? A
The then operator should be used instead of the lazy and and or when the value of an
expensive expression is only needed infrequently relative to all the evaluation opportunities,
and it is not necessary or desirable for the left operand to contribute True or False results.

3.5 Value Capture Operators

The value capture operator, capture, take the idea of enabled monitoring a bit further.
These operators never subscribe to the value of the right operand. Instead, they compute
and capture the value of the right operand when the left operand toggles to a specific state.

Infix Function Description
A capture B capture If A toggles True, capture B
A &^& B And

Capture
If A toggles True, capture B

!A capture
B

capture If A toggles False, capture B

A |^| B Or Capture If A toggles False, capture B
?A capture
B

capture If A toggles Unknown, capture
B

A B C A
capture
B

A &^&
B

A |^| B

! -> T B C B B C
? -> T B C B B C
! -> ? B C C C C
T -> ? B C C C C
? -> ! B C C C B
T -> ! B C C C B
The capture operator can be used as a more efficient alternative to a rule as shown below.

define capture cell a capture b;
-instead of-

NodeBrain Language 25

August 2014 Chapter 3: Formulas

define AndCapture on(a) capture=b;

It should be noted, that none of the operators intended to reduce expensive expression
evaluation yield much benefit when at least one cell referencing the expensive expression
subscribes. The first three rules below attempt to avoid unnecessary evaluation of expensive
expression b, but the fourth rule defeats them. Since b is only evaluated once each time
its arguments change, a single subscription causes as much evaluation as any number of
subscriptions greater than one. However, there may be reasons other than performance to
use "value capture" and "enabled monitoring" operators.

define capture on(a capture b);
define enabled on(a then b);
define lazy on(a && b);
define defeatsit on(b);

3.6 Flip-flop Operator

The flip-flop operator is provided to incorporate "memory" into a condition. Consider the
condition c3 defined here as a flip-flop with operands c1 and c2. The symbol ^ was chosen
to give visual indication that the first condition, c1, turns the flip-flop on, and the second
condition, c2, turns it off (up on c1 and down on c2).

assert c3==(c1 ^ c2);

The name flip-flop is borrowed from digital electronics. The behavior of NodeBrain’s flip-
flop is described by the following truth table. (A "c3" in the c3 column represents the
current value of c3—true, false, or unknown.)

c1 c2 c3
? ? c3
? T c3
? ! c3
T ? c3
T T c3
T ! !!
! ? c3
! T !
! ! c3
If one of c1 or c2 becomes true while the other is false, the value of c3 changes to true
(c1=true) or false (c2=true). For any other combination of c1 and c2, c3 remains unchanged.
This means the flip-flop operator "remembers" previous states.
The state of a flip-flop condition would be unpredictable if the order of reaction to changes
in the underlying conditions were unpredictable. The following example illustrates this
requirement.

assert c1==(a="a" and b="a");
assert c2==(a="b" and b="a");
assert c3==(c1 ^ c2);

assert a="a",b="a";

26 NodeBrain Language

Chapter 3: Formulas August 2014

assert a="b",b="b";

For the final assertion to give predictable results, a and b must both be assigned and both
c1 and c2 must be reevaluated before c3 can be reevaluated. This is accomplished by
associating a logic tree level number with each condition. The atomic conditions are level
0, c1 and c2 are level 1, and c3 is level 2. Conditions referencing a changed variable are
queued for reevaluation in level order. This satisfies the requirement for predictable results.
The flip-flop operator has no transformation rules like the ones most of us are familiar with
in Boolean algebra, at least not relative to standard Boolean operators. Some common
Boolean transformations are shown below.

!(c1 and c2) ==> !c1 or !c2
!(c1 or c2) ==> !c1 and !c2
(c1 and c2) or (c1 and c3) ==> c1 and (c2 or c3)

For the flip-flop operator, the following expressions are not equivalent.
c1 and (c2 ^ c3)

(c1 and c2) ^ (c1 and c3)

The first expression can only be true when c1 is true. The second expression may remain
true after c1 becomes false. In the first expression, c1 need not be true for the flip-flop to
change states, while c1 must be true for a state change in the second flip-flop expression.
For notational convenience, the "and" operator distributes over the flip-flop operator as
shown below. You must use parentheses as shown in the example above to avoid this
interpretation.

c1 & c2 ^ c3 ==> (c1 & c2) ^ (c1 & c3)
!c1 & c2 ^ c3 ==> (c1 | c2) ^ (c1 | c3)

The first expression is used to specify a "key" condition. This is illustrated with the
following rule and assertion. Unless the name is "sam" the flip-flop will not change states.

define samCritical on(name="sam" & health="critical" ^ health="good");
assert name="fred",health="critical";

The second transformation provides a convenient way to "lock" a flip-flop. This is illustrated
below. As long as check="off", the flip-flop will not change states.

define silly on(!(check="off") & value>"90" ^ value<"70");
assert check="off";

To summarize, flip-flop logic allows you to define "on" and "off" conditions for a Boolean
value. This introduces an element of memory. The state of a flip-flop is not only based on
current conditions, but also on past conditions or "events."

3.7 Time Operator

A time condition is a function of time that returns a logical value (True, False, or Unknown).
You specify a time condition with the time operator, tilde (~), followed by a time expression
enclosed in parentheses.

~(timeExpression)

The next chapter is devoted to a full explanation of time expressions. Here we use simple,
and hopefully intuitive, examples to illustrate how time conditions may be included in cell
formulas.

NodeBrain Language 27

August 2014 Chapter 3: Formulas

To take an action at 00:00 every Sunday, the following rule might be used.

define r1 on(~(sunday)): action

A time condition may be combined with other conditions. For example, to take an action
at 00:00 on Sunday if x=2, you simply add the x=2 condition.

define r2 on(~(sunday) and x=2): action

You will learn in the next chapter that the expression "~(sunday)" is true from midnight to
midnight on Sunday. So rule r2 will fire at 00:00 on Sunday if x=2 at that time. But this
rule will also fire at anytime on Sunday when x=2 transitions to a True state. You rule out
that possibility by using a more complicated time expression that is true only for 1 second
at 00:00 on Sunday.

define r3 on(~(s(00:00).sunday) and x=2): action

A time condition may be used as an operand of infix operators, as illustrated in rules r2
and r3 above, and may also be used as an operand of a prefix operator, as in r4.

define r4 on(!~(h(4)) and x=2): action

In rule r4, the time condition "~(h(4))" is true from 4:00am to 5:00am and false otherwise.
So r4 will take no action when x transitions to 2 between 4:00am and 5:00am on any day.
But it will take action if x=2 at 5:00am or x transitions to 2 outside the 04:00 hour.

3.8 Delay Operators

State delays provide a way to delay a state transition. The operators "~^" "~^!" and "~^?"
capture and delay state changes to True, False, and Unknown respectively.

condition ~^(timeExpression)
condition ~^!(timeExpression)
condition ~^?(timeExpression)

The time expression specifies the delay duration. Time expressions are covered in the next
chapter. Here we use simple examples to illustrate how time delays function as a part of a
rule condition.

Suppose you want to take action if term A has a value of 3 for 20 minutes. This can be
accomplished with the relational condition A=3 by delaying the transition to True for 20
minutes.

define r1 on(A=3 ~^(20m)): action

When the condition A=3 transitions from an Unknown or False state to True, the state
of "A=3 ~^(20m)" does not change, it preserves the prior state. But a timer is set for 20
minutes. When the timer expires, the delay condition transitions to True. If the condition
A=3 transitions to a new state before the timer expires, the state of "A=3 ~^(20m)" takes
on the new state (which may not be a change for the delayed condition) and the timer is
cancelled. This means the timer will not expire until the condition A=3 holds a True state
for 20 minutes.

Now suppose you want to prevent a condition from "resetting" until it has been false for 10
minutes. Use A=3 as the base condition again, and assume that A is always known. Once
this rule fires, it will not fire again until having been false for 10 minutes.

28 NodeBrain Language

Chapter 3: Formulas August 2014

define r2 on(A=3 ~^!(10m)): action

You may specify multiple time delays to ignore "temporary" transitions to more than one
state. The following expression will respond 20 minutes after A becomes true, if at no time
it is false for 10 seconds. This is accomplished simply by delaying the true timer reset
condition (false).

define r3 on(A=3 ~^!(10s) ~^(20m)): action

Let’s not forget about the unknown state. If you want to suppress short unknown states,
you can either include a delay on unknown or apply the closed world assumption to A. If
A is unknown, []A is false (0), otherwise []A is the same as A.

define r4 on(A=3 ~^?(10s) ~^!(10s) ~^(20m)): action

define r5 on([]A=3 ~^!(10s) ~^(20m)): action

The following example will respond to the /tmp file system reaching 90% usage for 15
minutes, resetting after falling below 90% for 30 minutes.

define r6 on([]filesys.’/tmp’.percent>90 ~^!(30m) ~^(15m)): action

The behavior of the state delay operators is summarized in the following tables, where time
t is the time C1 takes on a new state. A transition of C1 may change t before t+delay,
moving you to a new row in the table.

assert c2==(c1 ~^(delay))

C1 at time
t

C2 at time
t

C2 at
t+delay

? ? ?
! ! !
T C2 T

assert c2==(c1 ~^0(delay))

C1 at time
t

C2 at time
t

C2 at
t+delay

? ? ?
! C2 !
T T T

assert c2==(c1 ~^?(delay))

C1 at time
t

C2 at time
t

C2 at
t+delay

? C2 ?
! ! !
T T T

NodeBrain Language 29

August 2014 Chapter 3: Formulas

3.9 Node Sentence Formulas

A node sentence formula looks like a function call in many other languages.
node(arge1,arge2,...)

However this same node sentence syntax can appear in multiple places within NodeBrain
syntax. It is only a node sentence formula when it appears in a cell expression. The
highlighted strings are node sentence formulas in the examples below. In fact, they are the
same node sentence formulas.

define term on(x=2 and process("inetd","running")) action

assert good==process("inetd","running"),process("nb","stopped");

The reason process("nb","stopped") is not a node sentence formula is because it is not part
of a cell expression. In this case, it is a node sentence assertion instead.
The first type of node to show up in the NodeBrain language was the cache. The generalized
notion of a node evolved from the cache, so we use a cache to illustrate the concept here.
(You can find more information on cache nodes in the NodeBrain Module Reference.)
A NodeBrain cache is a table designed for event correlation. It has built-in features for
monitoring frequency and variation, but may also be used for more general event correlation
through cache node sentence formulas.
Suppose you want to take some action when an event of Type T2 occurs within 5 minutes
after an event of Type T1 if both events have the same value for attributes A and B. This
could be accomplished with the following rule set.

define event node; # define a node to be alerted
event. define t1ab node cache:(~(5m):a,b); # define cache
event. define r1 if(Type="T1"):t1ab. assert (A,B); # populate cache

event. define r2 if(Type="T2" and t1ab(A,B)):action # lookup

The highlighted cache condition is True when the t1ab cache contains an entry for the
current value of A and B. If either A or B is Unknown, the cache condition is Unknown.
Otherwise, the cache condition is False.
The event stream for this context is generated through a series of commands of the following
form.

event. alert Type="type",A="a",B="b";

When an event of type T1 occurs, rule r1 asserts (A,B) to the cache. This inserts an entry
for the current value A and B. This entry will expire within 5 minutes. When an event of
type T2 occurs, rule r2 will fire if the cache contains an entry for the values of A and B.
If the following events occur within a 5-minute period, the final event will cause rule r2 to
fire.

event. alert Type="T1",A="man",B="happy";
event. alert Type="T2",A="pilot",B=52;
event. alert Type="T1",A="sister",B="good";
event. alert Type="T0",A="buddy",B="cool";
event. alert Type="T2",A="man",B="happy";

If you defined the cache without scheduled expiration of entries, you must explicitly delete
entries when appropriate.

30 NodeBrain Language

Chapter 3: Formulas August 2014

event. define t1ab node cache:(a,b); # define cache
event.t1ab. assert ("abc","xyz"); # insert entry if new
event.t1ab. assert !("abc","xyz"); # delete entry
event.t1ab. assert !("abc"); # delete group of entries
event.t1ab. assert !(); # delete all entries

With or without an expiration period, you may want to delete entries based on some
condition. This is simply a way of forcing the cache condition to be False, just as asserting
an entry forces it to be True. So, you can think of a cache condition as a dynamic set of
named Boolean switches. You address a specific switch via the argument list.
The value of a node sentence formula and the relationship of this value to an assertion is
determined by a node module. The behavior of a cache node is determined by the cache
node module. Other nodes may use different node modules and will behave quit differently.
See NodeBrain Module Reference for information on a set of node modules distributed with
NodeBrain.

NodeBrain Language 31

Chapter 4: Time Expressions August 2014

4 Time Expressions

NodeBrain rules schedule actions. The scheduling of an action may be event based, state
based, or time based. Time-based scheduling is a special case of state based scheduling,
where it is the state of the system clock that is monitored relative to the Gregorian calendar.
Time expressions are used to specify a time-based schedule. In this chapter, we cover time
expression concepts, syntax, and semantics.� �
Syntax

timeExpression ::= timePrefixExpr | timeInfixExpr | timeIndexExpr
| timeFunctionExpr

timePrefixExpr ::= (= | "|" | # | ! | & | ~ | %) timeSet
timeInfixExpr ::= timeSet (, | . | ! | # | & | "|" | %) timeSet
timeIndexExpr ::= timeSet "[" timeParmList "]" timeSet
timeSet ::= "(" timeExpression ")" | timeFunctionExpr
timeFunctionExpr ::= timeFunction ["(" timeParmList ")"]
timeFunction ::= (y | year | q | quarter | n | month | w | week |

d | day | jan | january | feb | february | mar |
march | apr | april | may | jun | june | jul | july
| aug | august | sep | september | oct | october
| nov | november | dec | december | su | sunday
| mo | monday | tu | tuesday | we | wednesday
| th | thursday | fr | friday | sa | saturday | h
| hour | m | minute | s | second)

timeParmList ::= timeParm { , timeParm }
timeParm ::= (integer | integerRange | integerSpan)
integer ::= digit{ digit }
integerRange ::= integer .. integer
integerSpan ::= integer integer
 	
4.1 Time Expression Concepts

A time condition is a function of time that produces a Boolean value that automatically
changes over time according to a defined schedule. The rule engine responds to changes in
the value of a time condition as if it were explicitly asserted. This enables the firing of rules
based on a schedule.

Note: Traditional Boolean values of 1 and 0 are used in this section to describe time
expressions. The values produced by time formulas are actually 1 and !. This section will
be revised to use T and F to represent True and False to avoid confusion.

NodeBrain Language 33

August 2014 Chapter 4: Time Expressions

4.1.1 Boolean Function of Time

You might visualize a time condition as shown below. This illustrates the Boolean function
of time concept. A time condition C is a function of time t, where C(t) is 0 or 1 for any t.

4.1.2 Time Interval Set

A time condition is true during specific time intervals, so it can be visualized as a set of
line segments in one dimension (time). If condition C is defined by a set of time intervals,
we interpret C(t) to be true when t falls on any one of the intervals, and false otherwise.

Here, the word "interval" means a segment of time with a defined start and stop time. The
start time is included and the stop time is excluded. In other words, C(t) is true where
t>=start and t<stop for any interval in the set which represents C. The word "duration"
means a segment of time of a given length, but without a fixed start time. It is important
not to confuse the use of the words "interval" and "duration."

4.1.3 Partitioned Set

A partitioned set is a special case where the end of each interval is the start of the next
interval.

34 NodeBrain Language

Chapter 4: Time Expressions August 2014

Although you might expect time conditions represented by partitioned sets to be true for all
time, they actually become false and then return to true at the beginning of each interval.
This provides a leading edge to trigger events.

4.1.4 Normal Set

A normal set does not have overlapping intervals. A set is abnormal when it has overlapping
intervals. Abnormal sets are useful for defining complex time conditions as you will see
later. However, the set for a complete time condition is normalized for interpretation as a
Boolean function of time. The figure below illustrates how an abnormal set is normalized
for condition interpretation. A condition is true at times included in any interval. When
one interval starts at the stop time of another interval, the intervals are not combined. They
only combine when the intervals overlap. Normalization will not alter a partitioned set.

4.1.5 Functions

Time functions provide common schedules based on the Gregorian calendar. These functions
have names like year, month, day, hour, minute, and second. The time interval sets produced
by these functions are what the names imply. The year time function returns intervals that
start on January 1 at 00:00 and end on January 1 of the following year at 00:00. The month
time function returns intervals that start on the first day of a month at 00:00 and end on

NodeBrain Language 35

August 2014 Chapter 4: Time Expressions

the first day of the next month at 00:00. The day, hour, minute, and second time functions
return an interval for every day, hour, minute, or second respectively.
Each of the functions described above produces a partitioned time interval set. Other time
functions produce normalized time interval sets that are not partitioned. Examples are
sunday, monday, . . . , saturday, and january, february, . . . , december. These functions
produce time interval sets for a specific day of week or month of year. For example, the
january function returns intervals that start on January 1 at 00:00 and end on February 1
at 00:00. The sunday function returns intervals that start on Sunday at 00:00 and end on
Monday at 00:00.
The logical expression below contains a time condition using the day function. This could
be used to trigger a rule every midnight when the ready variable is 1.

~(day) and ready=1

4.1.6 Parameters

Time function parameters are used to select a subset of their intervals. For example, to
specify only days 1, 15, and 28 of each month, a parameter list is specified for the day
function. (See the section, Interval Selection Parameters.)

day(1,15,28)

4.1.7 Operators

Time expression operators are used to construct time interval sets based on other time
interval sets. Some operators have a Boolean logic orientation. For example, when used in
a time expression, and (&), or (|), and not (!) operate on time interval sets to produce new
sets that behave in the same way separate time conditions would if combined using these
same Boolean operators. The following logical expressions will have the same value at any
given time.

threshold=5 & ~(monday) & ! (~(january) | ~(june))
threshold=5 & ~(monday&!(january|june))

Other operators are based purely on the notion of time interval sets. The
figure below illustrates the union operation, which accepts any two sets, a
and b, as operands and produces a new set (a,b). This condition includes
the time intervals from both sets. (The union operator symbol is a comma.)

The union operator (,) is an example of an infix operator, meaning it is specified between
two sets. Other operators, like ! (not), work on a single set. These operators are specified
before the set and are called prefix operators.
A complex operator, [], enables indexed selection. The example below selects January 5.

36 NodeBrain Language

Chapter 4: Time Expressions August 2014

day[5]january

As you can see, this operator accepts counters as parameters. In this case, the January
function returns intervals representing the month of January for each year. The day function
returns the 31 days of January. The indexed selection, [5], returns the fifth day of January.

4.1.8 Concept Review

These concepts are explained further in the sections that follow. However, you will find
them easier to digest if you have an introductory understanding of the major concepts. So
let’s review quickly.

1. A time condition always has a value of TRUE or FALSE, and may be specified as a
sub-condition within a larger expression.

severity=9 and user="Fred" and ~(sunday)

2. A time condition is represented internally as a set of time intervals, where each interval
has a specific start and end time.

3. Time functions generate sets of time intervals based on the Gregorian calendar.
monday
june
quarter

4. Parameters select a subset of a time function’s intervals.
day(5,19)

5. Operators create new time interval sets from one or two referenced sets.
(monday,wednesday,friday)
friday[1]January

6. A time condition may contain component sets that are abnormal (have overlapping
intervals), but the resulting set for the full time condition is always normalized.

4.2 Indexed Selection

If a and b are time interval sets, a[n] b is a set of intervals selected from a, based on b.
Specifically, for each interval of b, you select the nth overlapping interval of a.

The number n may be preceded by a minus sign (-) to reverse the direction of count. That
is, a[-n]b selects the nth from the last overlapping interval of a for each interval of b.

Here are some examples of indexed selection using time functions as operands.

NodeBrain Language 37

August 2014 Chapter 4: Time Expressions

day[1]month first day of the month
day[-1]month last day of the month
month[2]year second month of the year
day[62]year sixty-second day of the year
day[-3]year 3rd to last day of the year

4.2.1 Index Lists

Any number of indexes may be specified in an index list as illustrated below.
day[1,15,20]month
month[1,3,5,7,9,11]year

The result, as one you might expect, is to select every indexed interval. The comma (,) is
referred to as the Union operator. The following schedules are identical.

day[1,15,20]month
(day[1]month),(day[15]month),(day[20]month)

4.2.2 Index Ranges

A range specification is a shorthand notation for a list of consecutive indexes, where only
the first and last index are given. The indexes between these values are "understood." The
range symbol is two periods (..). The following schedules are identical.

day[1,2,3,4,5,10,11,12,13,14,15,16]month
day[1..5,10..16]month

4.2.3 Spanned Index Ranges

Suppose you want to specify a schedule with intervals starting on the 1st day of the month
and ending on the 16th day of the month. This could also be stated as the "1st through
the 15th day of the month." The underscore character is used in this case.

day[1_15]month

You may combine simple indexes, index ranges, and spanned index ranges in a single index
list.

day[1,3,10..17,18_20,25]month

4.3 Interval Selection Parameters

Interval selection parameters are used similar to the indexed selection operator, [], in-
troduced in the previous section. However, interval selection parameters use an implied
function to perform selection. For example, day(1) specifies the first day of every month.
In this case, the month function is implied.
The interpretation of selection parameters is inconsistent from function to function with re-
spect to the base index and unit you are indexing, or indexing within. However, parameters
generally conform to standard usage, so are relatively intuitive.
The indexed selection operator, [], provides a more consistent and flexible notation than
selection parameters, so make use of indexed selection notation in the description of selection
parameters. For review, if a and b are interval sets, then a[1]b specifies, for each interval of
b, the first interval of a that overlaps the interval of b. The expressions below both return
the first day of every month.

38 NodeBrain Language

Chapter 4: Time Expressions August 2014

day(1)
day[1]month

The selection parameter notation is convenient because one of a or b is specified and the
other is implied. For the "specific month of year" functions (jan(),feb(),mar(),. . .), you
specify b, and a is understood to be day. The following schedules all specify the 15th of
every January.

january(15)
day[15]january
day[15]month(1)
day[15]month[1]year

For functions other than "specific month of year" (jan(),feb(),mar(),. . .), you specify a, and
b is understood. This is illustrated by the last two examples above, which show month(1) to
be equivalent to month[1]year. In most cases, where a is partitioned, b is understood to be
the partitioned schedule with intervals just larger than a. However, there are exceptions. In
general, the translation from the convenient parameter notation to the consistent indexed
selection notation is something one needs to learn. The column labeled "parameter(i)" in
the following table describes this translation.

Function Abbr Parent Parameter(i) Range
of i

millennium - millennium[i+1]Gregorian
century millenniumcentury[i+1]millennium
decade century decade[i+1]century
year y decade year[i+1]decade 0..9
quarter q year month[i*3-

2 i*3]year
1..4

month n year month[i]year 1..12
january jan year day[i]jan 1..31
february feb year day[i]feb 1..31
march mar year day[i]mar 1..31
april apr year day[i]apr 1..31
may may year day[i]may 1..31
june jun year day[i]jun 1..31
july jul year day[i]jul 1..31
august aug year day[i]aug 1..31
september sep year day[i]sep 1..31
october oct year day[i]oct 1..31
november nov year day[i]nov 1..31
december dec year day[i]dec 1..31
week w year week[i]year 1..54
day d month day[i]month 1..31
sunday su month sunday[i]month 1..5
monday mo month monday[i]month 1..5
tuesday tu month tuesday[i]month 1..5
wednesdaywe month wednesday[i]month1..5

NodeBrain Language 39

August 2014 Chapter 4: Time Expressions

thursday th month thursday[i]month1..5
friday fr month friday[i]month 1..5
saturday sa month saturday[i]month1..5
hour h day hour[i+1]day 0..23
minute m hour minute[i+1]hour 0..59
second s minute second[i+1]minute0..59
Any schedule that can be specified using selection parameter notation can also be specified
using indexed selection notation. However, the converse is not true. Indexed selection
notation can be used to specify schedules that can not be specified in selection parameter
notation. For example, selecting the 23rd Sunday of a year is straightforward using indexed
selection. It is not possible to specify this schedule using selection parameters only.

su[23]year

Although you may avoid selection parameter notation without reducing the set of expressible
schedules, where parameter notation can be used, it may be preferred for readability and
efficiency.

jan(15) is preferred over day[15]jan
day(7) is preferred over day[7]month

4.3.1 Parameter Lists

Any number of parameters may be specified in a parameter list as illustrated below.
day(1,15,20)
january(24,25)
month(1,3,5,7,9,11)

The result, as you might expect, is to select every interval matching any of the specified
parameters. The comma (,) is referred to as the Union operator. The following schedules
are identical.

day(1,15,20)
day(1),day(15),day(20)

4.3.2 Range Parameters

A range parameter is a shorthand notation for a list of consecutive numbers, where only the
first and last numbers are given. The numbers between these values are "understood." The
range symbol is two periods (..). The following expressions represent the same schedule.

day(1,2,3,4,5,10,11,12,13,14,15,16)
day(1..5,10..16)

4.3.3 Span Parameters

Suppose you want to specify a schedule with intervals starting on the 1st day of the month
and ending on the 16th day of the month. This could also be stated as the "1st through
the 15th day of the month." The underscore character is used in this case.

day(1_15)

If a(x y) represents (a[x] b) (a[y] b) and x > y, then an interval of the set a(x y) will start
in one interval of b and stop in another interval of b. For the following example, intervals
start on the 27th of one month and end on the 6th of the next month.

40 NodeBrain Language

Chapter 4: Time Expressions August 2014

day(27_5)

You may combine simple parameters, range parameters, and span parameters in a single
parameter list.

day(1,3,10..17,18_20,25)

4.3.4 Parent Parameters

If a(1) is shorthand for a[1] b, then b is the parent function of a. For example, month is the
parent of day, and year is the parent of month. With this understanding, you can specify
parameters for b in a parameter list for a. The following expressions specify every January
5th and October 11th respectively.

day(1/5)
day(10/11)

Again, it is helpful to describe this notation in terms of indexed selection. The following
expressions represent the same schedules as the expressions above.

day[5]month[1]year
day[11]month[10]year

Use of parent parameters is not limited to one level. The following set of equivalent expres-
sions illustrates this concept.

minute(1999/12/24@11:00)

minute(11:00).day(1999/12/24)
minute(11:00).day(24).month(1999/12)
minute(11:00).day(24).month(12).year(1999)
minute[1]hour[12]day[24]month[12]year(1999)

The previous example defined a specific minute in time. There is only one interval in the
resulting set. Suppose you wanted to schedule one hour at noon on every April 15th. This
is accomplished by simply not specifying a year.

hour(4/15@12)

hour(12).day(4/15)
hour(12).day(15).month(4)
hour[13]day[15]month[4]year

The following convention is used for parent parameter separators.
No separator: millennium, century, decade, year

year(2010)

year/month/day@hour:minute:second

day(2005/1/15) day(15).month(1).year(2005)
month(2006/7) month(7).year(2006)
hour(1/25@10) hour(10).day(1/25)
hour(5@11) hour(11).day(5)

NodeBrain Language 41

August 2014 Chapter 4: Time Expressions

minute(1/25@10:42) minute(10:42).day(1/25)
minute(12:17) minute(17).hour(12)
minute(15@12:17) minute(17).hour(12).day(15)
second(12:17:52) second(52).minute(12:17)
second(5@12:17:52) second(52).minute(12:17).day(5)

Uncommon parent parameters.
sunday(1/3) sunday(3).jan
january(2006/15) day(2006/1/15)
quarter(1/3) quarter(3).year(1)
week(1/27) week(27).year(1)

The "specific month of year" functions (jan, feb, mar, . . .) are an exception that require
special attention. The base parameters select days within the specific month, but the parent
function is year. You should avoid using parent parameters when the meaning is not clear.

4.3.5 Combining Range, Span, and Parent Parameters

Range and span parameters specify a first and last parameter for a series of consecutive
intervals within a schedule. Parent parameters may be used in either or both of the ends.

hour(4/15@12_17) hour(12_17).day(4/15)
hour(4/15@12_16@12) (hour(12).day(4/15))_(hour(13).day(16))
hour(15@20_12@5) (hour(20).day(15))_(hour(6).day(12))

4.4 Time Functions

This section describes all 30 time functions. Time functions produce time interval sets
based on the system clock and routines provided by the host environment. There are 11
partitioned time functions: millennium, century, decade, year, quarter, month, week, day,
hour, minute, and second. Except for the first three, which are seldom used, time functions
have single character abbreviations (y, q, n, w, d, h, m, s). The other 19 schedule functions
select specific intervals from the partitioned sets, that is, months of the year and days of
the week. These functions have three and two character abbreviations.

4.4.1 Millennium, Century, Decade, Year

There are defects and limitations associated with these functions. The year function without
parameters is reliable. Avoid millennium, century, and decade, and do not use parameters
with the year function until the defects have been fixed.

A time function is defined for each of the digits of a four digit year. Typically, millennium,
century, and decade are specified as parent parameters to year.

year(2003)

Function Abbr Parent Boundary
millennium - First second of millennium
century millennium First second of century
decade century First second of decade
year y decade First second of year

42 NodeBrain Language

Chapter 4: Time Expressions August 2014

The examples below specify equivalent schedules. (The current implementation does not
support these examples. No schedule greater than January 2038 can actually be represented
in the internal UTC format used by NodeBrain.)

millennium(3)
century(30_40)
decade(300_400)
year(3000_4000)

The breakout of each digit of a year is a bit strange perhaps, but it provides some flexibility
that you would not have it you had a single year function. If you don’t specify the parent
parameters by using all four digits, you select only on the specified digits.

year(0,2,4,6,8) Even years
year(1,3,5,7,9) Odd years

year(0_9) Same as decade
year(00_99) Same as century
year(000_999) Same as millennium

4.4.2 Quarter, Month, January through December

A year is divided into the standard 12 months selected using the month function. Specific
months may be selected using the function named for the month (january, february, march,
. . . , . . .december). The year is also divided into four three-month quarters selected using
the quarter function.

Function Abbr Parent Boundary
quarter q year 1st second of Jan., Apr., Jul., Oct.
month n year 1st second of month
january jan year " [selection parameter is day]
february feb year "
march mar year "
april apr year "
may may year "
june jun year "
july jul year "
august aug year "
september sep year "
october oct year "
november nov year "
december dec year "

The examples below show the relationship between quarter and month.
quarter(1) month(1_3)
quarter(2) month(4_6)
quarter(3_4) month(7_12)

Year is the parent schedule for all of these functions.
quarter(2005/3) quarter(3).year(2005)

NodeBrain Language 43

August 2014 Chapter 4: Time Expressions

month(2009/7) month(7).year(2009)
january(2007/15) january(15).year(2007)

day(2007/1/15)

Notice the strange case of individual months like January. The parent schedule is year,
but the intervals are days, like the day function. The calendar month functions are more
intuitive when a year is not specified.

jan(15), jun(6), oct(11)

4.4.3 Week, Day, Sunday through Saturday

The day schedule function returns 24-hour intervals corresponding to days of the Gregorian
calendar. The week function returns 7-day intervals corresponding to weeks of the Gregorian
calendar. The individual days of a week are returned by the functions cleverly named
sunday, monday, tuesday, wednesday, thursday, friday, and saturday.

Function Abbr Parent Boundary
week w year 1st second of Sunday
day d month 1st second of day
sunday su month "
monday mo month "
tuesday tu month "
wednesday we month "
thursday th month "
friday fr month "
saturday sa month "

The parent schedule for week is year, while the parent of day and sunday through saturday
is month.

week(20) 20th week overlapping each year - week[20]year
To get 20th full week, use "w.su[20]year".

day(15) 15th day of each month
tuesday Every Tuesday
saturday(3) 3rd Saturday of each month

4.4.4 Hour, Minute, Second

The hour, minute, and second functions are used to specify time intervals within a day. The
day schedule is the parent of hour, which is the parent of minute, which is the parent of
second.

Function Abbr Parent Boundary
hour h day 1st second of hour
minute m hour 1st second of minute
second s minute Every second

hour(7) 8th hour of every day. (07:00 to 08:00)
hour(15@7) 7:00 to 8:00 on the 15th of each month
minute(5) 6th minute of every hour

44 NodeBrain Language

Chapter 4: Time Expressions August 2014

minute(7:45) 07:45 to 07:46 every day
second(0:10) 11th second of every hour

s(5).m(30).h(10) 10:30:05 to 10:30:06 every day
s(10:30:05) 10:30:05 to 10:30:06 every day

4.5 Prefix Operators

Time interval sets can be transformed into new sets using the prefix operators described in
this section.

Syntax Operation Description
=a Conflict Intervals of a that intersect other intervals of

a.
|a Connect Combine connecting (end = start) intervals

and overlapping intervals.
#a Partition Partition time from interval start to interval

start.
!a Not Inverse schedule has intervals filling gaps not

covered by any interval of a.
&a Overlap Intervals generated for times covered by more

than one interval of a.
~a Normal Combine overlapping intervals of a.
%a Unique Intervals generated for times covered by one

and only one interval of a.

4.5.1 Conflict

The conflict operator (=) selects intervals of a set that intersect other intervals of the set. If
the intervals of the original set represent meetings you would like to attend, this operation
produces a set of conflicting meetings.

NodeBrain Language 45

August 2014 Chapter 4: Time Expressions

4.5.2 Connect

The connect operator (|) combines intervals where the end of one is greater than or equal
to the start of another. In other words, it combines overlapping and successive intervals.

4.5.3 Partition

The partition operator (#) generates a partitioned set using the start of each interval in
the operand set.

4.5.4 Not

The not operator (!) generates a set with intervals that fill the gaps not covered by any
interval of the operand set.

46 NodeBrain Language

Chapter 4: Time Expressions August 2014

4.5.5 Overlap

The overlap operator (&) generates intervals covered by more than one interval in the
operand set.

4.5.6 Normalize

The normalize operator (~) combines intervals that overlap, but retains successive inter-
vals. This operation is always performed on a time expression used in a time condition
"~(time expression)", so you only need to specify it when you want to normalize sub-
expressions.

4.5.7 Unique

The unique operator (%) generates intervals covered by one and only one interval of the
operand set. It preserves non-overlapping edges.

4.6 Infix Operators

Time condition operators are used in expressions to build new interval sets from the output
of time functions and other time expressions. The infix operators, described in this section,

NodeBrain Language 47

August 2014 Chapter 4: Time Expressions

perform operations on two sets. The operator is specified between the sets as shown in the
examples below.

sunday.january Sundays of January
day!tuesday Any day except Tuesday

Many of the operator symbols are used as both infix and prefix operators. If $ were an
operator symbol, it would be nice if you could say "$a" is the same as "a$a". In some cases
(e.g., | and #) this would be a true statement. In others, it clearly isn’t. For example,
"!a" is not the same as "a!a". However, there is always some similarity in infix and prefix
operations represented by the same symbol. For example, !, &, and | are always somehow
reminding us of Boolean Not, And, and Or.

Syntax Operation Description
a,b Union Union of intervals from a and b
a.b Selection Intervals of b that intersect intervals of b
a!b Rejection Intervals of a that do not intersect intervals

of b
a#b Until Intervals of a with lengths adjusted to the

nearest start of an interval of b
a&b And True when both a and b are true
a|b Or True when a or b are true
a%b Xor True when a or b, but not both, are true

4.6.1 Union

The union operator (,) produces a set containing all intervals found in either of the two
operand sets. Intervals found in both operand sets are found only once in the resulting set.
In other words, duplicates are not produced.

48 NodeBrain Language

Chapter 4: Time Expressions August 2014

4.6.2 Selection

The selection operator (.) selects intervals from the first operand set that intersect intervals
of the second operand set.

4.6.3 Rejection

The rejection operator (!) selects intervals of the first operand set that do not intersect
intervals of the second operand set.

4.6.4 Until

The until operator (#) extends the end of intervals of the first operand set to the next start
of an interval of the second operand set.

NodeBrain Language 49

August 2014 Chapter 4: Time Expressions

4.6.5 And

The and operator (&) produces a set of intervals where both operand sets are true.

4.6.6 Or

The or operator (|) produces a set of intervals where at least on of the operand sets is true.

4.6.7 Xor

The exclusive or operator (%) produces a set of intervals where one of the operand sets is
true, but not both.

50 NodeBrain Language

Chapter 4: Time Expressions August 2014

4.7 Time Sequences� �
Syntax

timeSequence ::= "{ " statements "}"
statements ::= statement { [,] statement }
statement ::= / | \ | timeStep | [integer | *] timeSe-

quence
timeStep ::= simpleStep | complexStep
simpleStep ::= [[(+ | -)] integer] timeUnit [simpleStep

]
timeUnit ::= s | m | h | d | w | n | q | y Note: second,

minute, hour, day, week, month, quarter,
year

complexStep ::= [integer] "(" timeExpression ") "
 	
A time sequence is a method of generating a time interval set by stepping through time and
setting values of true and false. The following example is interpreted as "true for 2 days,
false for 1 day, true for 3 days and false for 1 day."

{/2d\d/3d\d}

A time sequence, by itself, starts from the time it is translated by the interpreter. If this
example were used in a cell condition translated at 15:43 on a Saturday, the 8th of some
month, the resulting time interval set would be aligned to that time.

forecast ~{/2d\d/3d\}

sa yyyy/mm/08 15:43 - mo yyyy/mm/10 15:43
tu yyyy/mm/11 15:43 - fr yyyy/mm/12 15:43

A time sequence can be aligned to the intervals of another set using the select operator (.).
The following schedules are the same.

~({/2d\d/3d\}.n)
~(d[1_2,4_6]n)

A recurring event at any time of day can be schedule for a specified duration. This example
is specifies a 2 hour and 10 minute event starting at 17:10 on the fifth of each month.

~({/2h10m}.m(17:10).d(5))

You can also specify a repeating time sequence within a time sequence. This example
specifies 4 hours on and 4 hours off indefinitely.

~{*{/4h\4h}}

Intervals of a repeating time sequence are selected by (and aligned to) another time interval
set just like a non-repeating time sequence. The following example specifies 4 hours on and
4 hours off during intervals of 2 days on and 2 days of during each monthly interval.

~({*{/4h\4h}}.{*{/2d\2d}}.n)

Time sequences can be repeated a finite number of times also. This example repeats a
strange pattern 5 times.

NodeBrain Language 51

August 2014 Chapter 4: Time Expressions

~{5{/2h\1h/3m\2m}}

Further nesting is allowed.
~{3{5{/2h\1h/3m\2m}2{/1d\2d2{/1h\2h}}}}

Commas may be used if you like.
~{3{5{/2h,\1h,/3m,\2m},2{/1d,\2d,2{/1h,\2h}}}}

Negative numbers may be used on steps, but not repeat counts. Here you step 1 month less
7 days and then start 5 segments of 1 month each.

~{1n-7d,5{/1n}}

It is not necessary to specify a plus (+), but it is allowed. The following schedules produce
the same results.

~({/2h+30m}.h(8))
~({/2h,30m}.h(8))
~({/2h30m}.h(8))

When specifying a partitioned set, the false state (\) is assumed at the end of each specified
interval.

~{*{/1n/2n/2n/1n}}

4.8 Pulse Conditions� �
Syntax

pulseCondition ::= ~ "(" duration ")"
duration ::= integer timeUnit [duration]
timeUnit ::= s | m | h | d | w Note: second, minute, hour, day,

week
 	
For monitoring applications, you often just need a simple repeating schedule of a specific
duration. For that, there is a simplified syntax. The following schedules produce the same
results.

~(15m) Pulse condition

~{*{15m/}} Time sequence

A pulse conditions resolves to a single number of seconds. For example, "2h1m3s" resolves
to 7263 seconds. The value of a pulse condition is not true until the duration is complete.
It then remains true, except for the last second of every duration. This provides a leading
edge to trigger rule conditions.
Here you see a simple rule to run a script every 10 minutes. The script will run for the first
time 10 minutes after the rule is defined.

define myRule on(~(10m)):=/home/fred/bin/myscript.pl

52 NodeBrain Language

Chapter 5: Rules August 2014

5 Rules

A rule associates an action with a condition. It tells the rule engine what to watch for and
what to do if it sees it. In English, you might express a rule using a sentence of the form
"If condition, then action." For example, "If it starts to rain, then go inside the barn."
NodeBrain supports commands with similar structures.

define term type(condition) action; [Simple rule]
{type(condition);action;type(condition);action; } [Sequence rule]

5.1 Simple Rules

Simple rules constantly watch for the specified condition and take the specified action when
the condition is true. These rules have defined names that can be used to reference the rule.

define term type(condition) action;

define r1 if(a=1 and b=2) c=3:
define r2 on(a=2 and b=1) c=7.5;
define r3 when(a+b=9) ?c :=/home/fred/niner.pl;

disable r1; # This prevents rule r1 from responding to the condition
enable r1; # This causes rule r1 to start responding again
undefined r1; # This removes r1 from the engine’s memory

The different types of conditions (if, on, or when) provide for different behavior.

Type Behavior
if Only responds to an alert to the context in which

the rule is defined. Responds when the condition
is true, even if it was already true. This is used for
event monitoring.

on Responds to any assert or alert that transitions
the condition to a true state. This is used for state
monitoring.

when Like on, but is automatically undefined when the
condition transitions to true for the first time. This
is a one-time rule. As such, it can be used for either
event or state monitoring.

The action for simple rules may be a compiled assertion or a command that is interpreted
each time the rule fires.

define term type(condition) [assertion] [:command | ;]

define r0 on(a=7); [no action]
define r1 on(a=1) b=2; [assertion only]
define r2 on(a=3):-dir [command only]
define r3 on(a=5) b=3:-dir [assertion and command]

NodeBrain Language 53

August 2014 Chapter 5: Rules

You can group a set of rules within the context of a node. Normally when you have a
large number of rules you can organize them into smaller sets by using multiple nodes. For
example, suppose you are monitoring 5 servers. The rules for a single server might look
something like this.

define server node;
server. define myhost1.enterprise.com’ node;
server.’myhost1.enterprise.com. define r1 on(!.pingable) action11;
server.’myhost1.enterprise.com. define r2 on(cpu>95) action12;
server.’myhost1.enterprise.com. define r3 on(disk>80) action13;

You might have different rules for each server, organized by creating a node for each one.

server. define myhost2.enterprise.com’ node;
server.’myhost2.enterprise.com. define r1 on(disk>80) action21;
server.’myhost2.enterprise.com. define r2 on(cpu>92) action22;

If you find the rule sets for each server are similar, they may be easier to maintain if you
create a single source file a server rule set and source the file for each server.

Source File: Server.nb
#--------------------------
%default name="oops",ping=1,disk=80,cpu=95
%if(ping);
server.’%{name}. define r1 on(!.pingable) action1;
%endif;
server.’%{name}. define r2 on(cpu>%{cpu}) action2;
server.’%{name}. define r3 on(disk>%{disk}) action3;

Main rule file
#==================
source server.nb,name="myhost1.enterprise.com";
source server.nb,name="myhost2.enterprise.com",cpu=92
...

In this example, you have been assuming the various elements of state associated with each
server are updated independently as shown here.

assert server.’myhost1.enterprise.com’.disk=82;
assert server.’myhost2.enterprise.com’.cpu=64;
assert !server.’myhost1.enterprise.com’.pingable;

You are also assuming that you may have rules with conditions based on more than one
variable for a given server or for multiple servers. And, finally, assume you may have different
thresholds for each server. When these assumptions are true, you need to maintain the state
of all parameters for each server. If these assumptions are not true, you can simplify the
rule set by creating just one set of rules for all servers.

define server node;
server. define r1 on(!pingable) action1;
server. define r2 on(cpu>95) action2;
server. define r3 on(disk>80) action3;

54 NodeBrain Language

Chapter 5: Rules August 2014

With this set of rules, assertions might look like this. Notice that the server name is available
to be used via symbolic substitution in the rule actions.

server. assert name="myhost1.enterprise.com",disk=82;
server. assert name="myhost2.enterprise.com",cpu=64;
server. assert name="myhost1.enterprise.com",!pingable;

Depending on how you collect the variable values, it may be convenient to report all of the
variables at once.

server. assert name="myhost1.enterprise.com",disk=82,cpu=95,pingable;

In this case, you can once again introduce compound conditions based on multiple param-
eters for a given system.

server. define r4 on(disk<20 and cpu<10) action4;

You may notice you are slowly converting this application from a state monitoring system
into an event monitoring system. By doing this you have created two new problems. First,
the rules fail to respond to a problem on a given server when the same problem existed
for the server that reported previously. Remember, on rules only fire when the condition
transitions to True. So you need to change the rules to if rules and use alert instead of
assert.

define server node;
server. define r1 if(!.pingable) action1;
server. define r2 if(cpu>95) action2;
server. define r3 if(disk>80) action3;

server. alert name="myhost1.enterprise.com",disk=82;
server. alert name="myhost2.enterprise.com",cpu=64;
server. alert name="myhost1.enterprise.com",!pingable;

Second, the system has become chatty. The rules will respond over and over when you get
continued reports of a problem. You can solve this by including some cache nodes.

define server node;
server. define cPing node cache:(~(20m):server);
server. define cCpu node cache:(~(2h):server);
server. define cDisk node cache:(~(4h):server);

server. define r1 if(!cPing(server) and !.pingable) cPing(server): action1;
server. define r2 if(!cCpu(server) and cpu>95) cCpu(server): action2;
server. define r3 if(!cDisk(server) and disk>80) cDisk(server): action3;

Now the rules will only take action every 20 minutes on ping problems, 2 hours for high
cpu utilization, and 4 hours for high disk space utilization. This is good, but what if a
problem is resolved and then returns within this interval. For example, let’s say for action3
you open a trouble ticket for an SA to clean up the disk space and the SA gets it down to
70% used within 90 minutes and closes out the ticket. If the usage goes above 80% again
within the 4-hour cache interval, the new problem will not be detected. This can be solved
by adding another rule with a reset threshold.

server. define r3On if(!cDisk(server) and disk>80) cDisk(server): action3;

NodeBrain Language 55

August 2014 Chapter 5: Rules

server. define r3Off if(cDisk(server) and disk<75) !cDisk(server);

These two rules work in combination like a flip-flop condition you might elect to use for
state monitoring with rules for each server.

server.’ name define r3 on(.disk>80 ^ .disk<75): action3;

This is fine, but if the only action is to issue an alarm, you can create an alarm cache node
and let it handle the deduplication. Then you can go back to the simple set of rules.

define server node;
server. define r1 if(!.pingable):alarm. alert ("message1");
server. define r2 if(cpu>95):alarm. alert ("message2");
server. define r3 if(disk>80):alarm. alert ("message3");

See Appendix C, section C.1 Sample Alarm Script, for an example of what the alarm cache
node might look like.

Another type of rule, when, can be used in situations when you want to detect a condition
one time only. This can be used for both state and event monitoring.

define r1 when(a=1 and b=2):=/home/me/script.pl

assert a=1,b=2; # causes r1 to fire and undefined itself
-or-
alert a=1,b=2;

For a real world example, let’s assume you have a trouble ticket system with an interface
that returns a ticket number when you open a new ticket, and an interface to close a ticket
by number. A rule to generate a ticket might look like this.

define r1 on(condition):...
=$ ticketGenerationScript "closeCondition" "ticketInfo"

define ticket node;

Your ticket generation script could generate a ticket and define a when rule to monitor for
the condition used to close the ticket.

ticket. define ticketNumber’ when(closeCondition):=ticketCloseScript "..."

It is also possible to use when rules that create when rules that create when rules, and so
on, to monitor for a sequence of conditions. The next section describes sequence rules as
an alternative to this approach.

5.2 Sequence Rules

Warning: This feature is experimental and should not be considered stable. Significant
changes may occur prior to version 1.0.

56 NodeBrain Language

Chapter 5: Rules August 2014

� �
Syntax: Superset of time sequence

sequence ::= "{ " statements "}"
statements ::= statement { [,] statement }
statement ::= / | \ | timeStep | seqSuperset| [integer |

*] sequence
timeStep ::= simpleStep | complexStep
simpleStep ::= [[(+ | -)] integer] timeUnit [simpleStep

]
timeUnit ::= s | m | h | d | w | n | q | y Note: second,

minute, hour, day, week, month, quarter,
year

complexStep ::= [integer] "(" timeExpression ")"
seqSuperset ::= seqPublish | seqAssertion | seqCommand

| seqOn | seqIf
seqPublish ::= = cellExpression ;
seqAssertion ::= ‘ assertion ;
seqCommand::= : command ;
seqOn ::= (on | onif) "(" condition ")" statement
seqIf ::= if "(" condition ")" statement else state-

ment
 	
A sequence rule provides an alternative to simple rules and state variables as a way to
recognize a sequence of events and take actions at various points within the sequence.
There are two goals: (1) processing efficiency and (2) coding efficiency.

Simple Rules:

define r1 on(state=1 and A=5) state=2: command1

define r2 on(state=2 and A=7) state=3; command2

define r3 on(state=3 and A=9) state=1;

Sequence Rule:

{*{on(A=5): command1;on(A=7): command2;on(A=9) }}

A sequence rule can be more efficient to process because it automatically enables and dis-
ables rule conditions, watching only for those conditions that support a transition to the
next state in the sequence. In the example above, the simple rules are always monitoring for
three values of the state variable and three values of A. When one of these relational condi-
tions transitions to True, the Boolean "and" condition must be re-evaluated. The equivalent
sequence rule only monitors for one relational condition at a time. It first monitors for A=5.
When this condition transitions to True, the condition is disabled and command1 is inter-
preted. Next, the relational condition A=7 is enabled. When it transitions to True, the
condition is disabled and command2 is interpreted. Next, the condition A=9 is enabled.
When True, it is disabled and it loops back to enable A=5.

Coding efficiency is the second goal. One aspect of this is illustrated by the example above.
You are able to use one rule instead of three, and you don’t have to mess with the state
variable. However, there are other advantages to sequence rules. Because a sequence rule

NodeBrain Language 57

August 2014 Chapter 5: Rules

supports local variables, it is easier to avoid naming conflicts by using local variables that
are not exposed to all rules like context terms. In the following example, when A=5 the
value of B is captured as %b (local variables start with "%"). This variable is then used in
the second condition.

{*{on(A=5)‘%b=B: command1;on(A=%b+2): command2;}}

Sequence rules are not named. This may be convenient in situations where you have rules
that generate rules.

define watching node cache:(x);
define r1 if(A=1 and !watching(B)): \
{‘watching(B),%b=B;on(A=7 and B=%B)‘!watching(%b);: command;}

alert A=1,B=2; # spin off sequence rule for B=2 - new thread
alert A=2,B=4;
alert A=1,B=2;
alert A=1,B=3; # spin off sequence rule for B=3 - new thread
alert A=7,B=3; # interpret command with %b=3
alert A=7,B=2; # interpret command with %b=2;
alert A=1,B=2; # spin off sequence rule for B=2 - new thread

Although this is a trivial example, it illustrates the general idea. You want to be able to
recognize a condition and start a new monitoring thread based on specific attributes. For
this example, you can use two simple rules to accomplish the same thing.

define watching node cache:(x);
define r1 if(A=1 and !watching(B)) watching(B);
define r2 if(A=7 and watching(B)) !watching(B):command

But if you add a little more complexity to this problem, it becomes more difficult with
simple rules. Suppose an event attribute C provides the value of A you want to watch for.

alert A=1,B=2,C=5; # we want to watch for (A=5 and B=2)

In this case, you might want to use a sequence rule.
define watching node cache:(x);
define r1 if(A=1 and !watching(B)): ...

{‘watching(B),%b=B,%c=C; ...
on(A=%c and B=%B)‘!watching(%b);:command;}

With increasing numbers of key event attributes and steps in the sequence you need to
monitor, you expect the use of sequence rules to reduce the dependence on cache nodes
and state variables to maintain state. This should reduce the number of rules and the
complexity of simple rule conditions.
Now let’s look at the individual statements within a sequence rule.

5.2.1 Sequence Assert Statement

Syntax: ‘assertion;

Example: ‘a=1,b=2;

The sequence assert statement is simply an assert command using the backtick shorthand
for the verb and terminated with a semi-colon.

58 NodeBrain Language

Chapter 5: Rules August 2014

5.2.2 Sequence Command Statement

Syntax: :command;

Example: :myCache. alert ("abc");

A sequence command statement can be any valid interpreter statement delimited by a semi-
colon. This is somewhat restrictive because valid commands may contain semi-colons. You
can get around this using delayed symbolic substitution. (In a future release, we plan to
have built-in variables for this purpose.)

define semi cell ";";
{on(cond1);:$ =script1.pl abc$${semi}script2.pl;on(cond1);...}

5.2.3 Sequence Publish Statement

Syntax: =cellExpression;
/
\

Examples: =5;
=a+b;

Publishing a value for a sequence is useful when a sequence is used within a cell expression.
In the following example, the sequence takes on an initial value of 5 and then alternates
between 3 and 4 based on the transition of A to 2 and a 10 minute timer.

assert X=={=5;*{onif(A=2);=3;10m;=4}}+B;
define r1 on(X=3 and Y>7) action;

When the sequence publishes a new value, the expression {. . .}+B is re-evaluated and
the new value is published to X, causing re-evaluation of X=3 and potentially the AND
condition in r1.

Because a sequence is a superset of a time sequence, you may use / and \ as shorthand
notation to publish 1 and ! respectively.

/ same as =1;
\ same as =!;

5.2.4 Sequence WAIT Statements

Syntax: (timeExpression)
timeInterval

Example: (mo,we,fr) [wait until next Monday, Wednesday, or Friday]
(m(45)) [wait until 45 minutes after the hour]
10s [wait 10 seconds]

The wait statements are the same as in a time sequence. (See Chapter 5, Time Conditions.)

5.2.5 Sequence ON and ONIF Statements

Syntax: on(condition);
onif(condition);

NodeBrain Language 59

August 2014 Chapter 5: Rules

Examples: on(a=1 and b=2);
onif(a=1 and b=2);

The on and onif statements block execution of a sequence thread until the specified con-
dition is True (onif) or transitions to True (on). If the condition is already True when the
statement executes, onif will not block, and on will block until the next transition to True.

5.2.6 Sequence IF Statement

Syntax: if(condition) statement; [else statement;]

Examples: if(a=1)‘b=2;
if(a=1)‘b=2;else‘b=7;
if(a=1) {‘b=2;show -t; }else{‘b=7;cSystem. assert (system);}

The if statement is similar to that in your favorite high level language. You should not
confuse the if statement with simple if rules. The if statement does not wait for a
condition to be True and has no relationship to the alert command.

5.2.7 Sequence Repeat Statement

Syntax: { integer | * } {...}

Examples: 5{(mo);on(a=2):myscript.pl; }
*{on(a=3):myscript.pl; }

The repeat statement is used to perform a subsequence a specific number of times or forever
(*).

5.2.8 Sequence Rule Deficiencies

There are several deficiencies in the current implementation of the sequence rule. Some
that we intend to resolve in a future release are listed here.
• No WHILE or UNTIL statement
• No equivalent to the if rule for event monitoring
• No multi-path on statement (blocking SWITCH statement)
• No exit statement
• No command to kill a thread
• Not well tested

We elected to leave sequence rules unfinished in release 0.6.0 because they were not a priority
for this release and we have been unable to devote sufficient time to complete the release in
a reasonable period. Delaying the release further was not a good alternative.

60 NodeBrain Language

Chapter 6: Commands August 2014

6 Commands

All commands conform to a common general syntax.� �
Syntax

command ::= (contextPrefix s* command | simpleCmd) •
simpleCmd ::= (verb s* body | nodeCommand | specialSymbolCmd)
verb ::= predefined verb–see sections of this chapter for verbs
body ::= See syntax for individual commands by verb
contextPrefix ::= contextIdentifier . s*
nodeCommand ::= contextIdentifier "(" cellist")" [; | : text]
contextIdentifier::= nodeTerm [. contextIdentifier]
specialSymbolCmd::= See Chapter 7, Special Symbol Commands
 	
A command may start with a context prefix that tells the interpreter the context in which to
interpret the command following the prefix. A context prefix is a context identifier ending
with a period. Every term of a context identifier must be defined as a node. In the following
sample code, the context prefixes are shown in bold font.

define kinda node;
kinda. define really node;
kinda.really. define solar cell;

A node command also starts with a context identifier, but the identifier is followed by a left
parenthesis or a colon, and the identifier must be defined with a skill. Using a skill named
"magic", it might look like this.

define kinda node;
kinda. define really node magic;
kinda.really:This is a message to the magic skill
kinda.really(4,"sure"):This is a message to the magic skill

When a context identifier starts with the at symbol (@), the context is qualified starting at
the top level.

Commands starting with verbs are described in the remainder of this chapter and those
starting with special symbols are described in the next chapter.

6.1 Alert

The alert command is used to report an event to a set of rules defined within the context
of a node.

NodeBrain Language 61

August 2014 Chapter 6: Commands

� �
Syntax

assertCmd ::= alert s* [assertionList] [; [comment]] •
assertionList ::= cellAssertion { , cellAssertion }
cellAssertion ::= cellIdentifier(= | ==) cellExpression | [!

| ?] cellIdentifier
cellIdentifier ::= identifier | [identifier] "(" [cellist] ")"
cellList ::= cellExpression { , cellExpression }
 	
When an alert command is received by the interpreter, the specified assertions are made
from left to right. In the following example, the cell identified by the term A is assigned
the value of 3*5, and then the cell identified by the term B is defined to have the value of
A+4, and finally A is assigned the value of 3. At the completion of these assertions, A=3
and B=7==A+4.

alert A=3*5,B==A+4,A=3;

Once the specified, assertions have been made, the interpreter re-evaluates any cell that
references a changed cell. The following rule condition references cells that reference A and
B and must be re-evaluated when their values change.

define r1 on(A>2 | B=4);

When the value of a cell remains the same, dependent cells are not re-evaluated. This alert
command would not cause re-evaluation if it followed the previous alert command because
the value of A is still three and value of B is still 7.

alert A=3,B==2*A+1;

When cell evaluation is complete, the interpreter takes the actions specified by defined rules.
Any on or when rule whose condition transitions to true (from false or unknown) will fire.
In addition, any if rule whose condition is true will fire, even if it was already true before
the alert.
You can think of an alert command as a representation of an event. The assertion provides
event parameters. Rules within the alerted context (normally if rules) determine the
response.
If the alerted node has the skill to accept assertions (i.e., a cache), you may specify an
argument list.

alert ("goofy","silly"),A=3,B=4;

Using alert arguments with a cache node is useful for establishing thresholds that prevent
a duplicate action within some interval of time.

define hostUserType node cache:(~(1h):host,user,type(1));
hostUserType. define r1 if(type._hitState): action

Given the node definition above, the following alert could repeat frequently without trig-
gering more than one action per hour.

hostUserType. alert ("goofy","sally","HttpGet"),text="...";

Actually, if the alert repeated continually and the time between alerts was always less than
1 hour, the action would never repeat. This is because the counter would never fall to a
reset value. You could ensure at least one action every three hours by scheduling a reset of
the entire cache.

62 NodeBrain Language

Chapter 6: Commands August 2014

hostUserType. define r0 on(~(3h)):assert ?();

The first alert for any given cache row following the reset would now cause the action to
trigger. This would be in addition to an action following any 1 hour interval during which
the event did not occur.

A cache is used as an example here, but assertions can be used for any node whose module
supports assertions.

6.2 Archive

The archive command is used to archive the current log file.� �
Syntax

archiveCmd ::= archive [; [comment]] •
 	
Although an archive command may come from an external source on demand, normally
an agent will have a scheduled time that it archives the log file. The following rule will
cause a daily archive at midnight.

define r0 on(~(0h)):archive

The name of the log file must be set.

set log="/var/log/goofy.log";

When the archive command is issued, nb renames the current log file by inserting the time
YYYYMMDDHHMMSS and creates a new one.

/var/log/goofy.20030118000000.log # archived log
/var/log/goofy.log # new current log

6.3 Assert

The assert command is used to report a state change. The syntax is identical to the alert
command, except for the verb. A backtick (‘) is used as a shorthand notation for assert.� �
Syntax

assertCmd ::= (assert s* | ‘) [assertionList] [; [comment
]] •

assertionList ::= cellAssertion { , cellAssertion }
cellAssertion ::= cellIdentifier (= | ==) cellExpression |

[! | ?] cellIdentifier
cellIdentifier ::= identifier | identifier "(" [cellist] ")"
cellist ::= cellExpression { , cellExpression }
 	
Unlike the alert command, the assert command does not directly trigger IF rules. Both
commands trigger on and when rules when their condition transitions to a true state (from
false or unknown).

assert A=1,B=2,C,!D;

NodeBrain Language 63

August 2014 Chapter 6: Commands

The assertion above would cause the following rule to trigger if the condition was not already
true. (Note: C=1 and D=!.)

define r1 on(A=1 and B=2 and C and !D): action

The addressed context will be used implicitly for node assertions where you leave off the
node name. In the example below, "connie" is assumed in the first assertion within the list,
while "job" is specified explicitly in the last assertion within the list.

define job node tree;
define connie node cache:(x,y,z);

connie. assert ("huey","duey","louie"),A=1,B=2,job("salesman");

A cache row is deleted by asserting it to be "unknown" using a question mark (?), or false
using (!). They perform the same function here because a cache uses the "closed world"
assumption—if it is unknown, it is false.

connie. assert ?("huey","duey","louie"),A=1,B=2;

Multiple rows may be deleted by negating a partial row specification.
connie. assert ?("huey","duey"),A=1,B=2;
connie. assert ?("huey"),A=1,B=2; # delete any row starting "huey"
connie. assert ?(),A=1,B=2; # delete all rows

The way a node handles assertions depends on the node module providing the functionality.
A cache is used as an example here, but other node modules will implement different
behavior.
Refer to Cell Evaluation in Chapter 1 for an explanation of how the interpreter responds
to assertions.

6.4 Declare

The declare statement is used to name special objects in a name space unique to the object
type.� �
Syntax

declareCmd ::= declare s* term s* declareType s* declare-
Spec [; [comment]] •

term ::= see Chapter 3, Identifiers
declareType ::= identity | calendar | module | skill
declareSpec ::= type-specific specification
 	
These objects play a special configuration role, and their names should not be confused
with terms used in cell expressions. Declared terms are global, so you may reference them
in commands interpreted in any context.

6.4.1 Identity Declaration

A NodeBrain identity is similar to the familiar notion of a user account for applications and
operating systems. Commands execute with the permissions of the active identity, which
by default is an identity named "default."

64 NodeBrain Language

Chapter 6: Commands August 2014

� �
Syntax

identityDeclareCmd::= declare s* term s* identity [s* identityRank] [; [com-
ment]] •

identityRank ::= see rank command
 	
Node modules that accept commands from external sources (e.g., peer) must specify the ac-
tive identity when issuing commands to the interpreter and are fully responsible for identity
authentication. This allows for a wide variety of authentication mechanisms while providing
a common authorization mechanism. The peer module uses a public/private key authentica-
tion technique for socket connects, while peer queues and the pipe module rely on standard
file permissions. The Webster module uses x509 certificates or fixed passwords. Although
there are no current examples, a module could use one-time password authentication.
Sets of permissions are associated with identity ranks, which are similar predefined user
groups with static permissions. An identity’s rank defaults to "guest" if not specified. Use
the rank command to change the rank of an identity.
See the rank command for information on permissions.

6.4.2 Calendar Declaration

Calendars are declared for reference in time expressions. This is done to simplify time
expression coding or provide a single point of change for common time conditions.� �
Syntax

calendarDeclareCmd::= declare s*term s* calendar s* timeExpression [;
comment] •

term ::= Must start with uppercase letter (e.g., MyBday)
timeExpression::= see Chapter 5, Time Expressions
 	
A calendar is specified with a single time expression as illustrated by the following example.

declare Dayoff calendar friday[-1]month; # last Friday of month

Like all declared terms, calendar terms are managed in a separate name space and are
available for use within time expressions in any context. Within a time expression, de-
clared calendars are recognized by an uppercase letter. The following rules have equivalent
conditions given the previous declaration of "Dayoff".

define r1 on(a=1 and ~((monday,wednesday,friday)!Dayoff));
define r2 on(a=1 and ~((monday,wednesday,friday)!(friday[-1]month));

The following time condition specifies the Tuesday of the week of a Dayoff.
tu.w.Dayoff

Once declared in a NodeBrain process, calendars may not be modified. A change to a
calendar requires a process restart.

6.4.3 Module Declaration

Modules are declared to help NodeBrain locate them or to specify special initialization
parameters. If NodeBrain is properly installed, you will not need to declare modules under
normal conditions.

NodeBrain Language 65

August 2014 Chapter 6: Commands

� �
Syntax

moduleDeclareCmd::= declare s* term s* module s* moduleSpec [; comment]
•

moduleSpec ::= [{ "pathList" }] [module | fileSpec] [(cellist)] [:
text]

pathList ::= path { (; | :) path } A colon may not be used as a
path separator on Windows

module ::= identifier Platform independent variable part of pre-
ferred module filename. nb identifier .suffix

suffix ::= .so | .sl | .dylib | .dll NodeBrain uses the platform
standard.

fileSpec ::= " [path /] filename "
cellList ::= cellExpression { , cellExpression }
text ::= Any sequence of characters understood by the node

module.
 	
If you are declaring a module only to help NodeBrain locate it, you may declare the path
only. The term is used as the identifier to formulate the filename. The following examples
are equivalent on a platform that uses *.so as a module suffix. The first option has the
advantage of being platform independent.

declare snmptrap module {"."};

declare snmptrap module {"."}snmptrap;

declare snmptrap module ./nb_snmptrap.so;

The last example above does not allow for a path list. NodeBrain will look only in the
current directory. The following examples specify multiple directories to search in sequence.

declare snmptrap module {".:..:/home/fred"};
declare snmptrap module {".:..:/home/fred"}mysnmptrap;

If you don’t specify a path list or a path as part of the filename, the native system search
path applies. You can often control this with a platform-specific environment variable like
LD_LIBRARY_PATH. NodeBrain also allows you to override this with a platform-independent
environment variable, NB_MODULE_PATH.

export NB_MODULE_PATH="/home/fred:/home/fred/mod";

When you are declaring a module to use an alternate filename that conforms to NodeBrain’s
standard naming convention for modules (nb identifier.suffix), you can just specify the
module identifier and let NodeBrain generate the filename.

Declare snmptrap module mysnmptrap;

This is the same as the following on a system that uses *.so.

declare snmptrap module nb_mysnmptrap.so;

If a module accepts initialization parameters, you specify them after the optional module
identifier.

declare snmptrap module (7,"abc");

66 NodeBrain Language

Chapter 6: Commands August 2014

declare snmptrap module mysnmptrap(7,"abc");

When cell expressions are passed as argument, NodeBrain parses the expressions for the
module and they must conform to NodeBrain’s cell expression syntax. A module may also
accept initialization text parsed by the module. When specified, this text must follow the
optional cell expression list.

declare snmptrap module mysnmptrap:dkk a (*&- repo
declare snmptrap module mysnmptrap(7,"abc"):dkk a (*&- repo
declare mysnmptrap module :dkk a (*&- repo

The syntax of the text following the colon is foreign to NodeBrain. It simply passes the
text to end of line to the module initialization function.
When you combine path list, module identifier, cell argument list, and text, it looks some-
thing like this.

declare trap module {".:/home/fred" }snmptrap(162):trace

6.4.4 Skill Declaration

Like modules, you typically don’t need to declare skills unless you want to specify options
that create a variation of a skill.� �
Syntax

skillDeclareCmd::= declare s* term s* skill s* skillSpec [; com-
ment] •

skillSpec ::= [module.] skill [(cellList)] [: text]
module ::= identifier
skill ::= identifier
cellList ::= cellExpression { , cellExpression }
text ::= Any sequence of characters understood by

the node module.
 	
If you leave off the module identifier, NodeBrain assumes the module name is the same as
the skill name. In either case, the skill is associated with an explicit or implicit module
identifier. If this identifier is a declared module, the skill will bind to the declared module.
Otherwise, NodeBrain attempts to bind the skill to an implicit module.

nb identifier.suffix

This is illustrated by the following example.
declare mysql skill sql("databaseA","table1","field1,field2,field3"):trace;

In this example, NodeBrain will look for nb_sql.so on a system that uses *.so when trying
to locate the node module.
When the module name differs from the skill name, you need to either declare the module
using the skill name or specify the module identifier when declaring the skill.

declare mysql skill db.sql("databaseA","table1","field1,field2,field3"):trace;

-or-

NodeBrain Language 67

August 2014 Chapter 6: Commands

declare sql module db;
declare mysql skill sql("databaseA","table1","field1,field2,field3"):trace;

NodeBrain is willing to parse a list of cell expressions and pass them as arguments to the
skill initialization method in the node module. It will also pass any text from the colon to
end of line to the skill initialization method for parsing.

Arguments are not always required when declaring a skill. Perhaps you just want to alias
a skill so you can easily try out different modules that implement the same model without
changing the node definitions.

declare table skill tree;

6.5 Define

The define command is used to define NodeBrain objects.� �
Syntax

defineCmd ::= define s* term s* objectType [s* objectSpec
] [; [comment]] •

term ::= see Chapter 3, Identifiers
objectType ::= cell | nerve | node | if | on | when
objectSpec ::= type-specific specification
 	
The term provides a name for an object for future reference. The term is added to the
glossary of the context in which the define command is interpreted.

define connie node;
connie. define george cell 20;

After the definition above, you could reference george as a term defined in the connie context.

define sam cell connie.george>5;

You can also explicitly define a term within a specific glossary.

define connie.george cell 20; # explicit context glossary reference
define sam.age cell 65; # explicit cell glossary reference

Terms are implicitly defined as unknown cells when referenced within a cell expression for
the first time.

connie. define r1 on(a>5 and b=2 and c="abc"):action

The previous define command implicitly defines a, b, and c as if they were explicitly defined
as follows.

define connie.a cell ?;
define connie.b cell ?;
define connie.c cell ?;

The define command may not be used to change the definition of a previously defined
term without first un-defining the term. (See undefine.)

68 NodeBrain Language

Chapter 6: Commands August 2014

6.5.1 Cell Definition

The primary knowledge container in NodeBrain is an object called a cell. You define and
use cell terms much like variables and functions in other languages.� �
Syntax

cellDefineCmd::= define s* term s* cell [s* cellExpression]
[; [comment]] •

cellExpression::= see Chapter 4, Conditions
 	
The following examples define string, number, and formula cells.

define myname cell "goofy";
define myage cell 48;
define myformula cell B < (A*20) or C=5;

You are never required to use a define command for cells, it is just a convenient way of
organizing and documenting your logic. A cell expression is a literal identifier of a cell, so
you could simply repeat the expression instead of referencing a defined term. You may also
use the assert command to define cell terms.

assert myname=="goofy",myage==48,myformula==(B<(A*20) or C=5);

The assert command, unlike the define command, allows cell terms to be redefined simply
by asserting a new definition.

For compatibility with earlier versions of NodeBrain, the interpreter recognizes the following
deprecated syntax for defining cells. Support for types string, number, and condition will
be dropped in a future release. They are currently just aliases for cell, and no type checking
is performed.

define myname string "goofy";
define myname number 48;
define myformula condition B < (A*20) or C=5;

6.5.2 Nerve Definition

Nerve cells can be defined in NodeBrain to assist in rule debugging. A nerve cell is defined
just like a normal cell, except the object type is nerve.� �
Syntax

nerveDefineCmd::= define s* term s* nerve [s* condition] [;
[comment]] •

condition ::= see Chapter 4, Conditions
 	
When the value of a nerve cell is changed by an assertion or cell evaluation, the term
and new value are logged. This may be used as an alternative to performing a full trace,
providing a trace focused on specific cell conditions.

NodeBrain Language 69

August 2014 Chapter 6: Commands

6.5.3 Node Definition

A node is an important NodeBrain object type used to group rules and facts to create a
context for the interpretation of commands. It is also used to extend the capabilities of
NodeBrain using node modules.� �
Syntax

nodeDefineCmd ::= define s* term s* node [s* nodeSpec] •
nodeSpec ::= skillTerm ["(" cellList")"] [; [comment] | : text]
 	
A node definition may be as simple as the following example.

define connie node;

Additional define commands may then be used to add terms to the glossary of a node.
This is normally done by addressing define commands to the node’s context. The following
command defines three new terms, fred, a, and b, provided a and b are not already defined
in connie or a higher level context.

connie. define fred cell a>b;

Terms can be defined in a context without addressing the entire statement to the con-
text. The following command would not define a and b in the connie context because the
statement is not addressed to connie.

define connie.fred cell a>b;

A hierarchy of nodes may be created by defining nodes within the context of another node.

define connie node;
connie. define prographic1 node;
connie. define prographic2 node;
connie.prographic2. define mycon node;

A node may be assigned a skill provided by a node module (see NodeBrain Module Ref-
erence). The following example uses a node module called "tree" that is packaged with
NodeBrain.

define connie node tree;

Some node modules implement support for arguments and text when defining a node. You
have seen examples of the cache, which uses a somewhat complex syntax in the text portion
to specify cache options. The NodeBrain interpreter has no clue what the highlighted text
means. Only the cache node module understands it.

define money node cache: (~(2h):a{10}[4],b[10],c(100,200,300));

The count skill provided by the "simple" node module is an example of a skill that lets
NodeBrain parse the argument and supply the value each time it changes. Since NodeBrain
parses everything up to the optional (:), the highlighted portion of the definition below is
parsed by NodeBrain and must conform to the syntax of a cell expression list.

define one23 node simple.count(a>5 and b=17);

70 NodeBrain Language

Chapter 6: Commands August 2014

6.5.4 If-Rule Definition

An if object is a rule that responds to a node alert (see alertcommand). An if rule is
defined within a context and given a name (term) like any other defined object. When a
node is alerted, every if rule with a true condition will fire.� �
Syntax

ifDefineCmd ::= define s* term s* if "(" condition ") " [
action] •

condition ::= see Chapter 4, Conditions
action ::= [[priority]] [assertionList] [; comment

| : command]
priority ::= number from -128 to 127 with a default of

0
assertionList ::= cellAssertion { , cellAssertion }
cellAssertion ::= cellIdentifier (= | ==) cellExpression
command ::= see Chapter 10, Commands
 	
The condition component of an if rule may be a complex logical expression. This topic
is covered in Chapter 4, Conditions, and Chapter 5, Time Expressions. The condition is
enclosed in parentheses following the object type identifier ("if").

define r1 if((a="there" and b="cool") or c="senior") action

The action component may include a pre-interpreted assertion or any NodeBrain command
to be interpreted at the time the rule fires.

define r2 if(condition); # null action
define r3 if(condition) x=2,y=3; # pre-interpreted assertion
define r4 if(condition):$ assert z=$${a} # command to be interpreted
define r5 if(condition) x=2,y=3 : $assert z=$${a} # both
define r6 if(condition) x=2,y=3 : assert z=${a} # both

A pre-interpreted assertion is parsed once at the time of the definition and executed when
the rule fires. It follows the right parenthesis closing the condition. A command follows a
colon and is parsed and executed each time the rule fires. Symbolic substitution may be
used to construct a command from cell values at either the time of rule firing (r4 and r5
above) or rule definition (r6 above).
The priority is available for those rare cases where the order in which rules fire within a
given evaluation cycle is important. The default priority for a rule action is 0. You may
lower the priority down to -128 or raise it up to 127. If rule actions are schedule to fire in
the same evaluation cycle, they fire in order from lowest to highest priority number.

define r1 if(a=1 and b=2) b=3;
define r2 if(a=1)[1] a=2;
define r3 if(b=2)[-1] c=7;
alert a=1,b=2; # The rules fire in the order r3, r1, r2

6.5.5 On-Rule Definition

An on object is a rule that responds to assertions. (See assert and alert commands.)

NodeBrain Language 71

August 2014 Chapter 6: Commands

� �
Syntax

onDefineCmd::= define s* term s* on "(" condition ") " [
action] •

condition ::= see Chapter 4, Conditions
action ::= ["[" priority"]"] [assertionList] [; com-

ment | : command]
priority ::= number from -128 to 127 with a default of

0
assertionList ::= cellAssertion { , cellAssertion }
cellAssertion ::= cellIdentifier (= | ==) cellExpression
command ::= see Chapter 10, Commands
 	
The condition component of an on rule may be a complex logical expression. This topic
is covered in Chapter 4, Conditions, and Chapter 5, Time Expressions. The condition is
enclosed in parentheses following the object type identifier ("on").

define r1 on(a="guy" and b="smart" and c="what I mean") action

The action component may include a pre-interpreted assertion or any NodeBrain command
to be interpreted at the time the rule fires. Refer to If-Rule Definition for action examples.

The triggering mechanism for on rules is different than the mechanism for if rules. An on
rule triggers when the condition transitions from a non-true (false or unknown) to a true
condition.

define r2 on(a=1 and b=2): action

assert a=0,?b; # no response
assert a=1,b=2; # rule r2 will fire
assert ?a,b=0; # no response
assert a=1; # no response
assert b=2; # rule r2 will fire
assert a=1,b=2; # no response
assert a=0; # no response

assert a=1; # rule r2 will fire

6.5.6 When-Rule Definition

A when rule is defined with the same syntax as IF and ON rules, only with a term type of
"when."

72 NodeBrain Language

Chapter 6: Commands August 2014

� �
Syntax

whenDefineCmd::= define s* term s* when "(" condition ")"
[action] •

condition ::= see Chapter 4, Conditions
action ::= ["[" priority "]"] [assertionList] [; com-

ment | : command]
priority ::= number from -128 to 127 with a default of

0
assertionList ::= cellAssertion { , assertionList }
cellAssertion ::= cellIdentifier (= | ==) cellExpression
command ::= see Chapter 10, Commands
 	
A when rule operates just like an on rule, except it will only trigger once. It is automatically
undefined after it triggers. This is useful in situations where an event or state indicates the
need to start monitoring for a new condition and take action when it occurs.

define r0 on(x=2): $ define ’$${a}’ when(a="$${a}" and x=0): action

assert a="silly",x=2;
assert a="goofy",x=0;
assert a="silly",x=0; # when rule fires and takes action

A cache can be used as an alternative to when rules in some cases. For example, instead of
defining an on rule to define a when rule as above, you could use a cache and three on rules.

define watch node cache:(a);
define r1 on(x=2): watch. assert (a);
define r2 on(x=0): watch. assert !(a);
define r3 on(x=0 and watch(a)): action

The variability of the action will influence the choice between these options. The when rule
would be preferred if you need to construct the action using symbolic substitution at the
time r0 fires. This same information may not be available at the time r3 fires in the second
example.

A when rule may also be injected by an external application component. A trouble tick-
eting system might request NodeBrain to monitor for a condition and take the action of
automatically closing out the trouble ticket. In that case, it is appropriate for the rule to
fire once and then disappear.

6.5.7 Macro Definition

Macros may be defined to provide a parameter-based notation for generating single com-
mands.

NodeBrain Language 73

August 2014 Chapter 6: Commands

� �
Syntax: Macro Definition

MacroDefinition::= define term macro ["(" MacroParame-
ters")"] :% MacroSequence

MacroParameters::= MacroParameterList [: MacroDefaults]
MacroParameterList::= identifier { , identifier }
MacroDefaults::= assertion { , assertion }
assertion ::= identifier (= | ==) cellExpression
MacroSequence::= MacroItem [MacroSequence]
MacroItem ::= MacroSymbol | MacroCharacter
MacroSymbol::= %{ identifier }
MacroCharacter::= Any character other than \0 and \n, ex-

cept % followed by "{"
 	
A macro definition is a one line alternative to the source command and default command
within a sourced file.

define mydef macro(a,b:x=25) :% define %{a} cell %{b}/%{z};
define myps macro(process="") :% - ps -ef | grep %{process}
define myassert macro:assert a=1,b=2;

When an identifier follows a dollar sign ($) where a verb is expected, macro expansion
occurs.

define x cell 3;
connie. $mydef("sam",x*30:x=10);
connie. $myps(:process="inetd");
connie. $myassert;

For these examples, the following commands would be issued to the connie context.
define sam cell 90/10;
- ps -ef | grep inetd
assert a=1,b=2;

While a macro may be used as a shorthand notation for long commands, these examples
illustrate that a macro command may not necessarily be simpler than the resulting com-
mand. However, macros may still be useful for providing a single point of change for a
construct that is repeated frequently within an application.

6.6 Disable

The disable command is used to temporarily block the normal functioning of an object.
When a rule or cell term is disabled, they stop responding to changes in subordinate cells.
When a listener is disabled, it stops listening to the defined input.� �
Syntax

disableCmd ::= disable s* term [s*] [; [comment]] •
term ::= Rule, cell, or listener term
 	
When a rule is first defined, it is enabled. Here you define two rules and then disable the
first.

74 NodeBrain Language

Chapter 6: Commands August 2014

define r1 on(a=1 and b=2): action1

define r2 on(a=1): action2

disable r1; # Stop monitoring (a=1 and b=2) for action1

When a rule is disabled, its subscription to the rule condition is cancelled. When a cell
condition has no more subscriptions, it cancels subscriptions to subordinate cells. In the
example above, when r1 is disabled, the cell (a=1 and b=2) is also disabled and no longer
subscribes to the cells (a=1) and (b=2). The cell (a=1) remains enabled because r2 has
subscribed to it. However, the (b=2) cell is disabled for lack of any other subscriptions.
Furthermore, b is disabled, so we no longer monitor for changes to b.

6.7 Enable

The enable command is used to restore the normal functioning of an object. When a rule
or cell term is enabled, they begin responding to changes in subordinate cells. When a
listener is enabled, it starts listening to the defined input.� �
Syntax

enableCmd ::= enable s* term [s*] [; [comment]] •
Term ::= Rule, cell, or listener term
 	
An enabled object re-subscribes to changes in referenced cells. If a referenced cell is disabled,
it will automatically enable and re-subscribe to referenced cells. This is accomplished by a
recursive algorithm that ensures all sub-expressions are enabled and monitoring for changes.

6.8 Exit

The exit command is used to terminate with an exit code from 0 to 255. This may
be necessary to identify a condition for a calling script. The NodeBrain interpreter will
terminate with an exit code of 0 under normal conditions, 254 when terminating under the
--bail option, and 255 under failure conditions. Keep this in mind when selecting your
own exit codes.� �
Syntax

exitCmd ::= exit s* cellExpression [s*] [; [comment]]
•
 	

Suppose you have a diagnostic script for identifying a creature based on three attributes:
(1) number of legs, (2) type of coat, and (3) existence of a tail.

#!/usr/local/bin/nb -q
File: creature.nb
use : creature.pl
define dog on(legs=4 and coat="fur" and tail):exit 1;
define human on(legs=2 and (coat="skin" or coat="leather")):exit 2;
define bird on(legs=2 and coat="feathers" and tail):exit 3;

NodeBrain Language 75

August 2014 Chapter 6: Commands

Here’s a Perl script that pretends to do the hard work of examining the creature, with fixed
values for legs and tail, but somewhat random choice of coat. This will cause the answer to
vary between Bird and Human.

#!/usr/bin/perl
File: creature.pl
use strict;
my $term=shift();
my $coat=time()%2 ? "feathers" : "skin";
if($term eq ’legs’) {print("2\n");}
elsif($term eq ’coat’) {print("\"$coat\"");}
elsif($term eq ’tail’) {print("1\n");}
else{print("?\n");}

The exit code will be available to a calling script as illustrated by the following Bash script.
The $? variable receives the exit code, enabling the script to make decisions based on it.

#!/bin/sh
File: creature.sh
./creature.nb > /dev/null 2>&1
rc=$?
if test $rc -eq 0; then echo Unknown;
elif test $rc -eq 1; then echo Dog;
elif test $rc -eq 2; then echo Human;
elif test $rc -eq 3; then echo Bird;
fi

6.9 Forecast

The forecast command is used to test a time condition to ensure the expected "schedule"
(interval set) is generated. It is wise to test complex time conditions to validate your
understanding of the functions and operators. (While using a prototype version, it is also
wise to verify that the NodeBrain interpreter functions properly.)� �
Syntax

forecastCmd ::= forecast s* ~ (timeExpression) [s*] [; [
comment]] •

timeExpression::= See Chapter 5, Time Expressions
 	
The output of the forecast command is illustrated by the following example. The start
and end time of each interval is shown for several intervals starting at the current time.
Each time is shown as day of week, year, month, day (yyyy/mm/dd), hour, minute, second
(hh:mm:ss), and UTC time.

> forecast ~((mo,we,fr).d(17));
mo 2003/02/17 00:00:00 1045468800 - tu 2003/02/18 00:00:00 1045555200
mo 2003/03/17 00:00:00 1047888000 - tu 2003/03/18 00:00:00 1047974400
we 2003/09/17 00:00:00 1063782000 - th 2003/09/18 00:00:00 1063868400
fr 2003/10/17 00:00:00 1066374000 - sa 2003/10/18 00:00:00 1066460400

76 NodeBrain Language

Chapter 6: Commands August 2014

mo 2003/11/17 00:00:00 1069056000 - tu 2003/11/18 00:00:00 1069142400
we 2003/12/17 00:00:00 1071648000 - th 2003/12/18 00:00:00 1071734400
we 2004/03/17 00:00:00 1079510400 - th 2004/03/18 00:00:00 1079596800
mo 2004/05/17 00:00:00 1084777200 - tu 2004/05/18 00:00:00 1084863600
fr 2004/09/17 00:00:00 1095404400 - sa 2004/09/18 00:00:00 1095490800
we 2004/11/17 00:00:00 1100678400 - th 2004/11/18 00:00:00 1100764800
fr 2004/12/17 00:00:00 1103270400 - sa 2004/12/18 00:00:00 1103356800
mo 2005/01/17 00:00:00 1105948800 - tu 2005/01/18 00:00:00 1106035200
fr 2005/06/17 00:00:00 1118991600 - sa 2005/06/18 00:00:00 1119078000
we 2005/08/17 00:00:00 1124262000 - th 2005/08/18 00:00:00 1124348400
mo 2005/10/17 00:00:00 1129532400 - tu 2005/10/18 00:00:00 1129618800
fr 2006/02/17 00:00:00 1140163200 - sa 2006/02/18 00:00:00 1140249600
fr 2006/03/17 00:00:00 1142582400 - sa 2006/03/18 00:00:00 1142668800
mo 2006/04/17 00:00:00 1145257200 - tu 2006/04/18 00:00:00 1145343600
we 2006/05/17 00:00:00 1147849200 - th 2006/05/18 00:00:00 1147935600
mo 2006/07/17 00:00:00 1153119600 - tu 2006/07/18 00:00:00 1153206000
fr 2006/11/17 00:00:00 1163750400 - sa 2006/11/18 00:00:00 1163836800
we 2007/01/17 00:00:00 1169020800 - th 2007/01/18 00:00:00 1169107200
fr 2007/08/17 00:00:00 1187334000 - sa 2007/08/18 00:00:00 1187420400
mo 2007/09/17 00:00:00 1190012400 - tu 2007/09/18 00:00:00 1190098800
we 2007/10/17 00:00:00 1192604400 - th 2007/10/18 00:00:00 1192690800
mo 2007/12/17 00:00:00 1197878400 - tu 2007/12/18 00:00:00 1197964800
mo 2008/03/17 00:00:00 1205740800 - tu 2008/03/18 00:00:00 1205827200
we 2008/09/17 00:00:00 1221634800 - th 2008/09/18 00:00:00 1221721200
fr 2008/10/17 00:00:00 1224226800 - sa 2008/10/18 00:00:00 1224313200
(mo,we,fr).d(17) schedule ~1044318861-1044318861 interval=0,duration=0)

6.10 Load

The load command may be used to pre-load dynamic libraries supporting node modules.� �
Syntax

loadCmd ::= load s* " libraryFileName "] [[s*] ; [
comment]] •

libraryFileName::= Filename with fully qualified path or rela-
tive path.
 	

Under normal conditions where node modules are properly linked, you should never seek or
find a need to use this command. It is provided to support test environments where you want
different NodeBrain processes to use different support libraries with the same node module.
Before using the load command, you should consider using available alternatives like the
LD_PRELOAD and LD_LIBRARY_PATH environment variables on Unix and Linux systems.

NodeBrain Language 77

August 2014 Chapter 6: Commands

6.11 Query

The query command is used to direct the interpreter to attempt a solution for all rule
conditions and trigger rules for which the condition resolves to true, or to solve for a specific
term.� �
Syntax

queryCmd ::= query [s* term] [[s*] ; [comment]] •
term ::= node, rule, or cell term.
 	
This is illustrated with a trivial example, where user input is shown in bold.

> define r1 on(a=1 and b=2):#hi
> query

(a=1)

Enter value of a: 1

(b=2)

Enter value of b: 2
2008/11/11 18:4835 NB000I Rule r1 fired
: #hi
>

A node may be defined with a consultant script that will be invoked to resolve unknown
terms instead of prompting the user (see Use).
When a term is specified on the query command, the interpreter attempts to resolve the
rule or cell to a known value. In the previous example, you could have specified r1 in the
query command. Since you only had one rule, the result is the same. If you had more
rules in the previous example, the query command would have attempted to solve for all
of them.

> query r1; # only query to solve for r1

6.12 Rank

The rank command is used to associate an identity with a standard set of permissions.� �
Syntax

rankCmd ::= rank s* identityName s* rank [s*] [; [com-
ment]] •

rank ::= guest | peer | user | owner
 	
Each rank is associated with a set of one or more NodeBrain permission.

Rank Permissions

78 NodeBrain Language

Chapter 6: Commands August 2014

Connect Assert Define Declare System Control
Guest X
Peer X X X
User X X X X X
Owner X X X X X X

Each permission is associated with a set of allowed operations.

Permission Operations Allowed
Connect Connect to an NBP listener and issue un-

protected commands like show.
Assert assert and alert commands.
Define define and undefine commands.
Declare declare commands.
System Host shell commands under brain’s local

account.
Control rank, set, and stop commands.

Permissions are checked each time a command is interpreted, after symbolic substitution.
When a "peer" identity connects, define commands are allowed. For example, a "peer"
identity could issue the following command.

define r1 on(~(sunday)):- rm /etc/passwd

When a rule fires, the action command is attempted under the same identity that defined
the rule. Therefore, when this rule fires on Sunday, the action will be denied because the
"peer" identity does not have "system" permission.

We anticipate including grant and deny commands in a future release for more granular
control of identity permissions. This feature may include regular expressions that enable
restrictions to specific commands and parameters.

6.13 Set

The set command is used to assign values to NodeBrain options from within a script.
(See Section 1.3, Invoking NodeBrain, for an explanation of how options may be set using
arguments to the nb command. Also reference the nb manual page on Unix and Linux
systems.)� �
Syntax

setCmd ::= set s* setList [; [comment]] •
setList ::= setAssignment { , setAssignment }
setAssignment::= switchOption | variableOption = " string

"
 	
This first set of switch options may be turned on with a single lowercase letter and turned
off with a single uppercase letter. When specifying as an argument to NodeBrain, single
letter switches are prefixed with a dash (-), and full word switches are prefixed with two
dashes (–).

NodeBrain Language 79

August 2014 Chapter 6: Commands

Switch Options Description
b bail or B no Bail This option causes nb to terminate on an

error condition and return and exit code
of 255. This enables scripts that invoke
nb to respond to error conditions. With-
out this option, nb logs error conditions
and continues.

s servant or S noServant After all arguments have been processed,
enter servant mode. Unlike the "dae-
mon" option, which actually forks itself
to become an orphaned child in the back-
ground, the "servant" option tells Node-
Brain to enter a server state without
forking and prepare to communicate on
stdin and stdout.

d daemon or D
noDaemon

After all arguments have been processed,
enter a server state as a background dae-
mon process.

p prompt or P
noPrompt

After all arguments have been processed,
prompt an interactive user and read stan-
dard input.

t trace or T noTrace Trace internal function calls. This op-
tion spits out a lot of garbage to the log
file (stderr) and only has value to Node-
Brain developers.

The following options assign values to control variables.

Variable Options Description
log="file" This filename may be specified to log

daemon commands and responses. This
becomes stdout when the interpreter
"daemonizes."

out="directory" Child process output directory. This
directory is populated with files of the
name shell. pid and skull. pid containing
the standard output of child processes.

tracelog="file" This filename may be specified to log
commands and responses to a file. Out-
put is written to this file in addition to
stdout.

And then there are more debugging options that you should never need unless you are a
NodeBrain developer trying to debug a problem.

Debug Switches Description

80 NodeBrain Language

Chapter 6: Commands August 2014

showLevel or
noshowLevel

show command will display cell levels.

showValue or
noshowValue

show command will show value of sub-
expressions.

traceSource or
notraceSource

Display source file lines as input

traceFile or notraceFile Display log file listener input lines
traceSymbolic or
notraceSymbolic

Display each phase of symbolic
substitution

6.14 Show

The show command is used to display NodeBrain objects. This is primarily a debugging
tool.� �
Syntax

showCmd ::= show s* [showList] [; [comment]] •
showList ::= showOption [, showList]
showOption ::= (showExpr | showItem) [showQualifier]
showExpr ::= . | term | (cellExpression)
showItem ::= (- | + | = | / | *) [s*] [showMenuItem]
showMenuItem::= Name of menu item.
showQualifier::= Qualifiers are supported for terms and

some menu items.
 	
The show command has built-in help. Simply type a show command with no arguments to
get started.

> show

The show command provides context specific and global information.

show (<cell>) [<option>] Show cell expression.
show <term> [<option>] Show specific term in active context.
show -<term_type> Terms of a given type from active context.
show +<dictionary> Terms in an alternate dictionary (name space).
show =<cell_type> Global cell expressions of a specified type.
show /<trigger_type> Global triggers of a specified type.
show *<section> [<topic>] Help on specified topic.

A partial SHOW command displays a menu (e.g., "show -").

Use "?" in place of options [<...>] for more information.

To display the value and definition of a term, enter the term as the first argument.
> show fred

Use the show command with a menu symbol (- + = / *) to display a menu.

NodeBrain Language 81

August 2014 Chapter 6: Commands

> show -

To show all terms of a specified type in the active context:

show -<term_type>

The <term_type> option may be specified with a single character:

(c)ells - terms defined as dynamic cell expressions
(f)acts - terms defined as constant numbers or strings
(i)f - if rules
(l)isteners - listeners
(n)umbers - numbers
(o)n - on rules
(r)ules - if, on, and when rules
(s)trings - strings
(t)erms - all terms defined in the current context
(w)hen - when rules

6.15 Source

The source command is used to interpret another NodeBrain (*.nb) source file within the
current context, with optional symbolic substitution. This command is an alias for the
%INCLUDE directive described in the chapter on Source File Directives.

6.16 Stop

The stop command is used to terminate a NodeBrain agent (daemon or service).� �
Syntax

stopCmd ::= stop [[s*] ; [comment]] •
 	
Only identities ranked as "owner" are permitted to stop an agent. The stop command may
be used as a scheduled action, like most commands.

defined stopRule on(a=25 and ~(Sunday.d(21))):stop;

This example would stop an agent at 00:00 Sunday falling on the 21st day of the month,
provided a=25. Otherwise it would stop anytime on such a day when the expression a=25
transitioned to true.
If a stop command is issued in an interactive or batch script, it will terminate the script
with an exit code of zero without processing remaining command line argument. See exit
and quit as alternatives.

6.17 Undefine

The undefine command is used to remove the definition of a term that is not referenced.
Referenced terms can not be undefined.

82 NodeBrain Language

Chapter 6: Commands August 2014

� �
Syntax

undefineCmd::= undefine s* term [[s*] ; [comment]] •
term ::= Any term known to the current context.
 	
The following example shows rule r1 defined and undefined.

define r1 on(a=1 and b=2):- ps -ef | grep nb

undefined r1;

Once undefined the term r1 may be reused.

define r1 on(~((mo,we).d(15))):- /home/fred/job/r1.sh

6.18 Use

The use command sets options for the addressed context.� �
Syntax

useCmd ::= use [s*] [(optionList)] [s*] [: consul-
tant | ; [comment]] •

optionList ::= optionSpec { , optionSpec }
optionSpec ::= [!] option
option ::= echo | hush | trace
consultant ::= A shell command whose output supplies

values for unknown terms in diagnostic
(solve) mode.
 	

The following options control processing of commands within the context.

echo - Display commands
hush - Execute commands without displaying them
trace - Display trace data while the command is executing

In diagnostic NodeBrain scripts, you may optionally specify a consultant command for
resolving unknown cell values. When the following script runs, the "whatis" command will
be called to get the value of "a" and "b".

#!/usr/local/bin/nb
define connie node;
connie. use:whatis this
connie. define r1 on(a>10 and b<5):action1
connie. define r2 on(a<5 and b>10):action2
solve

$ whatis this "a"
$ whatis this "b"

NodeBrain Language 83

August 2014 Chapter 6: Commands

6.19 Windows

The windows command is used only for Windows-specific administration functions. You
should think of "windows" as a context instead of a verb. There are multiple verbs that
can be used in this context.� �
Syntax

windowsCmd ::= windows s* winCmd [[s*] ; [comment]
] •

winCmd ::= showenv | serviceCmd
serviceCmd ::= serviceVerb s* service
serviceVerb ::= createService | deleteService | startSer-

vice | stopService

service ::= Name of windows service
 	
6.19.1 showenv

This command displays some information about the Windows environment.

> windows showenv

The output will look something like this.

Computer name: mycomputer
User name: myuser
System Directory: C:\WINNT\system32
Windows Directory: C:\WINNT
Personal Folder: C:\Documents and Settings\myuser\My Documents
Application data: C:\Documents and Settings\myuser\Application Data
Local Application Data: C:\Documents and Settings\myuser\Local Settings\Application Data

6.19.2 createService

You can create a Windows service using this command as shown here.

> windows createService service

However, you must first define the service in service.ini, which must be found in the
current directory.

[service]
Title=service_displayed_name
Description=service_description
Command=service_command

The following example defines a service called "Sysmon NodeBrain".

[sysmon]
Title=Sysmon NodeBrain
Description=System Monitor Kit
Command=C:\sysmon\nb.exe service=sysmon C:\sysmon\sysmon.nb

To create this service, you would issue the following command

84 NodeBrain Language

Chapter 6: Commands August 2014

> windows createService sysmon

The "service=sysmon" argument included as the first argument in the example is required
when executing nb as a Windows service. It tells the NodeBrain interpreter to "act like a
Widows service." The second argument in the example provides the startup rules, which
will typically include listener definitions.

6.19.3 deleteService

To delete a service, use the deleteService verb.
> windows deleteService service

If the Windows Services frame is open when you delete a service, it will be displayed as
"disabled" and you will not be able to create the service again as long as the frame is
open. If you want to recreate the service, perhaps after changing the definition in the
service.init file, first close the Windows Services administrator’s tool.

6.19.4 startService

NodeBrain includes commands for starting and stopping services so you don’t have to shell
out to "net start" and "net stop". To start a service, use the startService verb.

> windows startService service

6.19.5 stopService

To stop a service, use the stopService verb.
> windows stopService service

NodeBrain Language 85

Chapter 7: Special Symbol Commands August 2014

7 Special Symbol Commands

In this chapter, you will learn about commands that start with a special symbol instead of
a term. (See the previous chapter for commands starting with terms.)

7.1 # (Comment)

Commands starting with pound sign (#) are recognized as comments. It is not necessary
for the # to be in the first column.

This is example 1 of a comment.
#This is example 2.

define r1 on(a=1) b=2; # This is example 3.
define r2 on(a=7) b=1; This is example 4.

The interpreter ignores comments. Only the first two lines above are examples of # being
interpreted as a comment indicator. Ending a command with a semi-colon (;) is sufficient to
flag the remainder to end of line as a comment. Use of a # after the terminating semi-colon,
as on line 3 above, is recommended for visual effect.

7.2 > (Prefix)

The greater than symbol is used to assign a command prefix in interactive mode. The
current command prefix is displayed in the prompt and passed to the interpreter as a prefix
to commands entered at the prompt. Although a prefix can be any string, it is normally
set to a node context or command prefix.

Syntax: > > prefix

Example: > > fred.
fred.> assert a=1; [same as > fred. assert a=1;]
fred.> >fred:
fred("x"):> assert a=1; [same as > fred("x"): assert a=1;]
fred:> >
>

7.3 ‘ (Assert)

The backtick is just shorthand for the assert verb.
Syntax: > ‘assertion;

Example: > ‘a=1,b=2;
Same As: > assert a=1,b=2;

7.4 ^ (Output Message)

Commands starting with a carat (^) are sent to stdout. When NodeBrain is running as a
child of another NodeBrain process, stdout may be interpreted by the parent process.

Syntax: > ^message

NodeBrain Language 87

August 2014 Chapter 7: Special Symbol Commands

Example: > ^Looks like we have a problem.
> ^assert a=1; # assuming stdout is going to a parent nb

7.5 - or = (Servant)� �
Syntax

servantCmd ::= (-|=) s* [servantUser] s* [servantOut]
[servantExec] [servantArgs] •

servantUser ::= [username] *** Not supported on Win-
dows ***

servantOut ::= [servantRedirect [servantRedirect]] [:]
servantRedirect::= (! | | | % | > [>] servantFile)
servantFile ::= filename s* | " filename ")
servantExec ::= ($ | @) (s* | servantFile) | $$ | @@
servantArgs ::= string interpreted as shell command or ar-

guments to the executable
 	
The servant command is used to invoke another program to perform a task, either be-
cause the program already exists, or because the task is more appropriate for a procedural
language.

The syntax of the servant command has possibilities far more complicated than you will
normally need. Let’s first look at a simple subset.� �
Syntax

servantCmd ::= (- | =) shellCmd •
shellCmd ::= string interpreted by the host shell (e.g.,

/bin/sh or cmd.exe)
 	
In this form, you have a host shell command prefixed by a minus (-) or an equal (=) symbol.
When you use a minus, the command is executed by the shell and the output is displayed.
The interpreter blocks until the command terminates. When you use an equal, the process
is started with output directed to /dev/null (nowhere) by default and the interpreter
continues without blocking.

Here’s an example using the minus (-) prefix. Output from the shell command is displayed
to the log file (stderr) by default.

Syntax: > - command

Example: > -ps -ef | grep inetd

To execute a shell command without blocking, use the = prefix.

Syntax: > = command

Example: > =find / -name "*sally*" > /tmp/find.out

88 NodeBrain Language

Chapter 7: Special Symbol Commands August 2014

For this command, the interpreter continues on without waiting for the shell command to
terminate. Output is directed to /dev/null by default, but the shell redirects stdout to
/tmp/find.out.
The command output on stdout may be directed to the NodeBrain interpreter by including
a colon (:) just before the shell command. This should be used only with programs or scripts
that are designed to write NodeBrain commands to stdout.� �
Syntax

servantCmd ::= (- | =) [:] shellCmd •
shellCmd ::= string interpreted by the host shell (e.g.,

/bin/sh or cmd.exe)
 	
Example: > -: echo "assert a=1;"
> -: myscript.pl
> =: myscript.pl

This feature provides a simple method of dynamically obtaining information. It can be used
to initialize rules at startup, obtain the state of a monitored element, or collect a batch of
events from an external source.
If you are not satisfied with the default destinations for stdout and stderr, you may
specify explicit redirection. You may direct them to the same destination by providing
one redirection, or to separate destinations by providing two redirections—first stdout and
then stderr.� �
Syntax

servantCmd ::= (- | =) [servantRedirect [servantRedirect
]] [:] shellCmd •

servantRedirect::= (! | | | % | > [>] servantFile) ! -
/dev/null | - log file % - write to generated
filename in "out" directory > [>] servant-
File - write or append to specified filename

servantFile ::= filename s* | " filename "
shellCmd ::= string interpreted by the host shell (e.g.,

/bin/sh or cmd.exe)
 	
You may want to discard the output from a blocking servant instead of sending it to the
log file by default.

Example: > -! myscript.pl
> -!: myscript.pl

Similarly, you may want to log output from a non-blocking servant instead of discarding it
by default.

Example: > =| myscript.pl
> =|: myscript.pl

When logging output from a non-blocking servant, NodeBrain puts a time stamp and label
on every line for identification because these lines will be intermixed with other log output.

NodeBrain Language 89

August 2014 Chapter 7: Special Symbol Commands

A process spawned using = without | or : is considered to be an "unattached" child. Any
other process spawned using - or = is an "attached" child. When NodeBrain terminates, all
attached child processes are sent a SIGHUP signal requesting termination. The unattached
child processes are orphaned and allowed to run to their natural termination.

You may direct output to a NodeBrain generated filename by using a percent (%) symbol.

Example: > =% myscript.pl
> =%: myscript.pl

Output is directed to a file named servant.time.count.out in the directory specified
by the out setting variable. If the out setting variable is /home/myuser/out,
the time is 1136086568, and the count is 3, the output will be directed to
/home/myuser/out/servant.1136086568.003.out. This filename is displayed when the
servant is started.

You may also direct output to a file whose name you specify following > or >> (append).
Filenames are terminated by a space unless you enclose them in quotes.

Example: > =>myscript.out myscript.pl
> =>>myscript.out myscript.pl
> =>"c:/My Directory/myscript.out" myscript.pl

> =>>myscript.out : myscript.pl

Just as : can be used to redirect stdout separately from stderr, a second output specifica-
tion can be used to redirect stderr separately from stdout.

Example: > -!| myscript.pl discard stdout and log stderr
> =|!myscript.pl log stdout and discard stderr
> =%!myscript.pl log stdout and discard stderr
> =>"c:/My Directory/myscript.out" ! myscript.pl

> =>>myscript.out % myscript.pl

If you use two output specifications and also redirect stdout to the interpreter, the first
output specification is ignored. This is because it has been overridden for both stderr and
stdout.

Bad Example: > -!|: myscript.pl interpret stdout and log stderr
> -%|: myscript.pl interpret stdout and log stderr

If you provide two output specifications that are the same, the second is ignored to make
sure you get the expected results.

Bad Example: > -!! myscript.pl same as -!
> =|| myscript.pl same as =|
> -%% myscript.pl same as -%
> ->my.out >my.out myscript.pl same as ->my.out

The point here is that the child process gets a stdout and stderr that are duplicates
instead of two separate files opened for output. You should use the simpler form since there
is nothing gained by the more complicated form.

90 NodeBrain Language

Chapter 7: Special Symbol Commands August 2014

You might be wondering what a silly idea it is to support > and >> for redirection. After
all, you are executing a shell command and can redirect output using >, 2>, >>, and 2>>
within the shell command. That’s true. Here are some fine examples.

Example: > =| myscript.pl > myfilename.out
> =: myscript.pl 2> myfilename.out

The reason we support redirection to a file in the prefix to the command is because you are
not limited to executing a shell command. There may be times when you want to execute
a program directly without invoking a shell program. You do this by coding an at symbol
(@) followed by an executable filename in quotes.

Example: > =: @myscript.pl
> =: @myprogram arg1 arg2 arg3 "this is arg 4"

In this case, the program is invoked with an argument array as if it were invoked by a
shell. Here you don’t have the shell to handle the output redirection for us, so the prefix
redirection option may be needed.

Example: > =>myfilename.out : @myprogram arg1 arg2

If you wanted to invoke a shell using @, it would look like this.

Example: > =: @/bin/sh -c "command" Unix/Linux
> =: @cmd.exe /c "command" Windows

This means you can use any shell program you want. But there is a slightly more convenient
way to use a substitute shell program when the syntax conforms to that of the standard
shell program for the platform.

Example: > =: $/bin/ksh command to end of line
> =: $mycmd.exe command to end of line

As if you don’t have enough complexity here, in some special cases a dollar sign ($) or at
symbol (@) is not followed directly by a filename. When followed by a space, these symbols
refer to predefined programs. When followed by an asterisk (*), they refer to the executing
program (e.g., nb).

$ /bin/sh or cmd.exe
@ /usr/local/bin/nb or /Program Files/NodeBrain/nb.exe
$$ the current executing program as shell
@@ the current executing program as if invoked by a shell

The NodeBrain Module Reference describes a Servant module closely related to the servant
command, but with some important differences (e.g., the ability to send commands to the
servant program’s stdin).

7.6 $ (Substitution)

Commands prefixed with a dollar sign ($) followed by a space are put through a symbolic
substitution process that replaces ${expression} with the value of expression in the active
context, unless the "${ " is preceded by another $, in which "$${ " is replaced by "${ ".

NodeBrain Language 91

August 2014 Chapter 7: Special Symbol Commands

> assert a="abc";
> assert b="def";
> assert abcdef=123;
> assert x=5;
> $ $ assert c=$${x+${a}${b}};
Pass 1 $ assert c=${x+abcdef};
Pass 2 assert c=128;

When a command starts with a dollar sign ($) followed by a term, it is interpreted as
a macro—a special case of symbolic substitution. The topic of symbolic substitution is
covered more completely in a later chapter.

7.7 % (Directive)

Commands starting with a percent symbol (%) followed by a space are put through a
symbolic substitution process that replaces %{expression} with the value of expression in
the local context. The topic of symbolic substitution is covered in a later chapter.
Commands starting with a percent symbol (%) followed by a term are source file directives.
This topic is covered in the next chapter.

92 NodeBrain Language

Chapter 8: Source File Directives August 2014

8 Source File Directives

Directives are used in source files to conditionally select lines for processing and establish
values for symbolic substitution.� �
Syntax

::= Note: Directive statements start with per-
cent (%) in column 1.

directive ::= assertDirective | defaultDirective | ifDi-
rective | quitDirective

assertDirective::= %assert [s* assertionList] [; [comment]]
•

assertionList ::= assertion { , assertionList }
assertion ::= identifier (= | ==) cellExpression
defaultDirective::= %default [s* assertionList] [; [comment]

] •
ifDirective ::= %if(condition) [[s*] ; [comment]] • . . .

[%elseif(condition) [[s*] ; [comment]]
•] . . . [%else [[s*] ; [comment]] •] . . .
%endif [[s*] ; [comment]] •

includeDirective::= %include s* filename [, assertionList] [;
[comment]] •

filename ::= Name of NodeBrain (*.nb) source file. En-
close in quotes if the filename includes spa-
ces (e.g., Windows).

quitDirective ::= %quit
useDirective ::= %use s* filename [; [comment]] •
 	
The NodeBrain interpreter, nb, is instructed to interpret a source file by including files in
the parameter list when nb is invoked, or by the source command.

Parameter: nb a=1 mysource.nb

Command: > source mysource.nb,a=1,b="Critical";

A source file (script) that uses directives looks something like this.
%default a=0,b=""; # Set defaults
%if(a=5 and b=""); # Conditional processing
assert teamid="Knights";
%else;
assert teamid=14;
%endif;
%if(a=1);
%quit; # Bail from this source file
%endif;

NodeBrain Language 93

August 2014 Chapter 8: Source File Directives

% # Use local context symbolic substitution - %{b}
% $ define r1 on(team(${teamid},"%{b}")): alarm(5):XYZ0001I Double Trouble

Directives are not intended as a procedural scripting language. This feature is only included
to enable simple variation in rule files. More complex procedures can be written in your
favorite scripting language.

8.1 %assert Directive� �
Syntax

assertDirective::= %assert [s* assertionList] [; [comment]]
•

assertionList ::= assertion { , assertion }
assertion ::= identifier (= | ==) cellExpression
 	
The %assert directive is like an assert command, only it operates in a special context
established for a source file. We call this the local context. The terms assigned or defined
by the %assert directive are only available to other directives during the processing of a
source file. Once a file has been processed, the local context is destroyed.

%assert a=1,b="Critical";

There are multiple methods of exchanging information between the local context and the
active context. (See Chapter 13, Symbolic Substitution.)

assert %a=x; # Assert to local term in active context
assert y=%a; # Assert from local term in active context
% assert y="%{a}"; # Substituting local term in active context

Active context symbolic substitution does not apply to directive lines. The following com-
mands do NOT assign "abc" to the local term %a.

assert x="abc";
%assert a="${x}";

This actually sets %a to the literal value "${x}". The following command sets the value of
y to a string with the value of x at the time the command is interpreted.

% assert y="%{a}"; # before local substitution

assert y="${x}"; # after local substitution

8.2 %default Directive� �
Syntax

defaultDirective::= %default [s* assertionList] [; [comment]
] •

assertionList ::= assertion { , assertion }
assertion ::= identifier (= | ==) cellExpression
 	
94 NodeBrain Language

Chapter 8: Source File Directives August 2014

The %default directive is like the %assert directive, only terms that have already been
defined will not be modified. This is used to establish defaults that can be overridden when
the file is included.

> source mysource.nb,abc=1;

Script: mysource.nb
%default abc=5,xyz="something";
...

In the example above, the local term abc is 1 and the local term xyz is "something." If the
term abc had not been specified on the include command, then abc would be 5.

8.3 %if Directive� �
Syntax

ifDirective ::= %if "("condition")" [[s*] ; [comment]]
•

. . .
[%elseif
"("condi-
tion ")"
[[s*] ;
[comment
]] •]
. . .
[%else [[
s*] ; [com-
ment]] •]
. . .
%endif [[
s*] ; [com-
ment]] •
 	
The %if directive is used for conditional processing of lines in a source file. It works
just like you would expect an if statement to work. The conditions are evaluated in the
local context. There is no access to active context variables. Only local context symbolic
substitution, %{term}, is supported.

%if(a=27 or b=2);
...
%elseif(z="%{x}%{y}");
...
%else;
...
%endif;

NodeBrain Language 95

August 2014 Chapter 8: Source File Directives

8.4 %include Directive

The %include directive is used to interpret another NodeBrain (*.nb) source file within
the current context, with optional symbolic substitution.� �
Syntax

includeDirective::= %include s* filename [, assertionList] [;
[comment]] •

filename ::= Name of NodeBrain (*.nb) source file. En-
close in quotes if the filename includes spa-
ces (e.g., Windows).

assertionList ::= cellAssertion { , cellAssertion }
cellAssertion ::= cellIdentifier (= | ==) cellExpression
 	
The symbolic terms specified as arguments to the source file are made available in a tem-
porary "symbolic" context.

%include myfile.nb,a="abc",b=2; # Include file with symbolic substitution

References to %{a} and %{b} are replaced in myfile.nb text as it is input, before statement
interpretation.

Before substitution: %{a}=%{b};

After substitution: abc=2;

References to %a and %b may be used within cell expressions.

define r1 on(a=%a and x>%b);

The define command above will produce the same result within myfile.nb as the following
define command.

define r2 on(a="abc" and x>2);

The cell expressions used in the argument list to an include file are interpreted within the
current symbolic context while the argument identifiers are defined in the symbolic context
of the included file. In the following example, you define terms a and b as arguments to
myfile.nb in a new symbolic context. The cell expressions "a" and "x+5" are interpreted
within the current symbolic context. So the left side a and right side a are not the same
variable.

%include myfile.nb,a=a,b=x+5;

8.5 %quit Directive

The %quit directive is used to end processing of a source file.� �
Syntax

quitDirective ::= %quit [[s*] ; [comment]] •
 	
96 NodeBrain Language

Chapter 8: Source File Directives August 2014

8.6 %use Directive

The %use directive is for including NodeBrain (*.nb) source files that provide a top level
resource to other files. It is similar to the %include directive and the source command,
but differs in three important ways: 1) the specified file is sourced at the top level context
instead of the current context, 2) it is sourced only if not already sourced via a prior %use
directive, and 3) no parameters may be specified on the use directive.
This directive is intended for files that serve as a resource to any number of source files. It
liberates high level files from having to prepare the resource nodes required by subordinate
files before sourcing them, or even having to know what resource nodes are required.� �
Syntax

useDirective ::= %use s* filename [, assertionList] [; [com-
ment]] •

filename ::= Name of NodeBrain (*.nb) source file. En-
close in quotes if the filename includes spa-
ces (e.g., Windows).
 	

8.7 \ Line Continuation Directive

NodeBrain commands are presented to the interpreter as single lines. A newline character,
\n, terminates command parsing like a null character, \0. However, commands in a source
file can span multiple lines. To continue a command on the next line, end it with a con-
tinuation symbol (backslash), \. The source file processor assembles multi-line commands
into a single line for presentation to the interpreter.� �
Syntax

continuation ::= part1 [s*] \ [s*] • [s*] part2 [s*] \ [s*] •
. . . [s*] partN [[s*] ; [comment]] •
 	

NodeBrain Language 97

Chapter 9: Translators August 2014

9 Translators

Translators are used by various NodeBrain node modules to convert foreign text into Node-
Brain commands. The syntax of a translator file is relatively simple if you are comfortable
with regular expressions. NodeBrain uses the Perl Compatible Regular Expression (PCRE)
library. See www.pcre.org for documentation on the supported regular expressions.� �
Syntax

translatorSection::= [s*] translatorStmt • [translatorSection]
translatorStmt::= blankLine | comment | section
blankLine ::= Null line or line containing nothing but

space or tab characters
comment ::= # anytext
section ::= [ignoreOption] [branchId] sectionStmt
ignoreOption ::= !
branchId ::= path [.number]
path ::= branch [.path]
branch ::= [continueOption] (label | value | regex |

assignment)
continueOption::= @
label ::= alpha { alphanumeric }
value ::= " text "
regex ::= (regularExpression)
assignment ::= [projectionExpression]
sectionStmt ::= leafStmt | blockStmt
leafStmt ::= include | link | commandStmt
include ::= $ filename
link ::= ~ filename
commandStmt::= : projectionExpression
blockStmt ::= { [comment] •translatorSection }
projectionExpression::= (text| $[stringId [, charF charR]]) [pro-

jectionExpression]
stringId ::= [regexRef] (name | number | < | > | ~

| - | = |)
regexRef ::= . [regexRef]
name ::= Name of group (?’ name . . .) in the refer-

enced regular expression
number ::= Number of group (. . .) in the referenced

regular expression
charF ::= Character to find
charR ::= Character to replace charF
regularExpression::= See documentation at www.pcre.org.
 	
For each line of input text, a translator emits zero, one, or more NodeBrain commands to the
interpreter. Emitted commands are interpreted within the context in which the translator

NodeBrain Language 99

www.pcre.org

August 2014 Chapter 9: Translators

is used. This is normally the context of a node that uses the translator. One node module
that uses translators is called the translator node module because it only exists to provide
translator functionality. However, other node modules use translators as well.
If you define a translator as follows, the translation script (or translator) is the file
mytran.nbx.

define myTranslator node translator("mytran.nbx");

This chapter describes translator syntax and semantics.

9.1 Encapsulation Symbols

Translator syntax is cryptic, but simple in structure when you break it down into compo-
nents. A small set of special symbols is used to encapsulate the more complicated syntax
of regular expressions, projection expressions, and NodeBrain commands. These symbols
will be explained further, but we begin by listing them to show how small the language is
at the encapsulation layer.

Begin End Function
End of line Comment
! Ignore to end of statement
@ Process beyond statement even if a

match is found
" " Branch when string matches text buffer
(Balanced) Branch when regular expression matches

text buffer
[Balanced] Branch after assigning value to new text

buffer
a-zA-Z Non-

alphanumeric
Labeled unconditional branch

{ Balanced } Statement block
$ End of line Include another translator file (*.nbx)
~ End of line Link to another translator file (*.nbx)
: End of line Emit a command to the NodeBrain

interpreter
Let’s look at an example of a translator, highlighting the encapsulation characters that
identify statements in the translation language. An overview of these statements is provided
in the next section.

Sample translator
(abcdef)
@(xyz):assert zyz;
(error (\d+)): alert type="error",id="$[1]";
(^ABC00234 (\d+)){

: assert b=$[1];
: assert abcError="abend";
[$[1] $[=]].(27 critical): assert a=3;
}

100 NodeBrain Language

Chapter 9: Translators August 2014

Next, highlight the regular expressions. If you are not already familiar with Perl or "Perl
compatible" regular expressions, you will need to study up a bit. You will find plenty of
help on the web.

Sample translator
(abcdef)
@(xyz):assert zyz;
(error (\d+)): alert type="error",id="$[1]";
(^ABC00234 (\d+)){
: assert b=$[1];
: assert abcError="abend";
[$[1] $[=]].(27 critical): assert a=3;
}

Here the projection expression of an assignment statement is highlighted. Projection expres-
sions are covered as a separate topic later. The important point now is that any confusing
symbols in a statement starting with a square bracket "[", up to a balanced "]" can be
recognized as an assignment without understanding it further.

Sample translator
(abcdef)
@(xyz): assert zyz;
(error (\d+)): alert type="error",id="$[1]";
(^ABC00234 (\d+)){
: assert b=$[1];
: assert abcError="abend";
[$[1] $[=]].(27 critical): assert a=3;
}

Encapsulated NodeBrain commands are highlight below. They are identified by a statement
starting with a colon (:). See Chapter 6, Commands, for a complete list of NodeBrain
commands.

Sample translator
(abcdef)

@(xyz): assert zyz;
(error (\d+)): alert type="error",id="$[1]";
(^ABC00234 (\d+)){
: assert b=$[1];
: assert abcError="abend";
[$[1] $[=]].(27 critical): assert a=3;
}

NodeBrain commands embedded in a translation script are constructed using the same
projection expression syntax as assignment statement. This is just a form of symbolic sub-
stitution performed during translation. Here we highlight the symbols causing substitution
within NodeBrain commands before they are sent to the interpreter.

Sample translator

NodeBrain Language 101

August 2014 Chapter 9: Translators

(abcdef)
@(xyz): assert zyz;
(error (\d+)): alert type="error",id="$[1] ";
(^ABC00234 (\d+)){
: assert b=$[1] ;
: assert abcError="abend";
[$[1] $[=]].(27 critical): assert a=3;
}

9.2 Statement Overview

The following table explains the general idea behind each type of translator statement and
provides an example of the syntax. Here ". . ." represents any valid statement.

Symbol Statement Description
comment Used to document a translation script.

The following section is for apache log
rules

! ignore Statement to ignore when a translator is
compiled. This is used to "comment out"
a multiple line statement.
!. . .

@ and continue Execute the subordinate branch and con-
tinue with the next statement even if a
match is found.
@. . .

" value If text matches string value, execute the
subordinate statement. Otherwise, con-
tinue to next statement.
"abc". . .

(regex If text matches regular expression, exe-
cute the subordinate statement. Other-
wise, continue to next statement.
(let (\w+)=(\d+)). . .

[assign Perform string substitution to assign a
value to a new text buffer and execute
the subordinate statement.
[$[name] $[number]] . . .

a-zA-Z label Execute subordinate statement under
the specified label.
gnulinux. . .

{ block Execute a block of translator statements
as a single statement.
{ # This is a block . . . }

102 NodeBrain Language

Chapter 9: Translators August 2014

$ include Include another translator. The refer-
enced translator is loaded into the cur-
rent translator as a block statement.
$plan/WatchUser/WatchUser.nbx

~ link Links to another translator and execute
as a block statement. The referenced
translator is loaded automatically if it
isn’t already loaded.
~plan/WatchUser/WatchUser.nbx

: command Perform string substitution by interpret-
ing as projection expression, pass result
to command interpreter, and continue to
the next statement.
:assert abc;

[to hqere–check shading/subheads]

In the table above, statements in rows that are not shaded operate independently and
perform relatively simple functions, so we won’t provide further explanation with respect
to their function.

Statements in shaded rows are flow control statements. Concepts of flow control are de-
scribed in Section 9.5, Flow Control Statements.

Statements in the more darkly shaded rows are "branch" statements. To fully understand
these statements, read Section 9.6, Translation Tables and Trees and Section 9.7, Statement
Reordering. The "value" and "regex" statements are conditional branch statements, while
the "assign" and "label" statements are unconditional branch statements.

The "assign" and "command" statements both involve a form of symbolic substitution
described in Section 9.3, Projection Expressions.

Additional symbols may be used when specifying translator transactions as described in the
section, Translators.

Once you get the hang of it, a one-page quick reference should be sufficient when coding
translators. See the Translator Quick Reference at the end of this chapter.

Before we launch into a long complicated explaining in the following sections, let’s take a
look at an example of a compound translation statement.

(whatever on port=(?’port\d+) from=(?addr\d+\.\d+\.\d+\.\d+)){
[$[port]] {

"1443":assert event("whatever","$[port]","$[addr]");
"8080":assert event("whatever","$[port]","$[addr]");
}

[$[addr]]~plan/watchedAddr/watchedAddr.nbx
[$[addr]:$[port]]"192.168.1.101:80":assert HomeWebHit;

}

This statement begins with a (regex) with a subordinate block statement containing two
[assign] statements. The (regex) extracts a "port" string and an "addr" string from the
input text. The assignment statements put one or both of these strings into a buffer for

NodeBrain Language 103

August 2014 Chapter 9: Translators

further analysis. The first assignment statement watches for two specific values and reports
matches via "assert" commands. The second assignment statement delegates the additional
analysis to another translator script. The third assignment statement has a single "value"
statement, which you could read as addr="192.168.1.101" and port=80. This illustrates
a way of working around the limitation that translator can only test one string at a time.
The assignment statements and the first two "assert" commands, all contain projection
expressions. This is just symbolic substitution using the matched strings from the regular
express.

9.3 Projection Expressions

Projection expressions specify a symbolic substitution of strings matched within the input
text. This concept was introduced in the previous section using the following example.

(whatever on port=(?’port\d+) from=(?addr\d+\.\d+\.\d+\.\d+)){
[$[port]] {

"1443":assert event("whatever","$[port]","$[addr]");
"8080":assert event("whatever","$[port]","$[addr]");
}

[$[addr]]~plan/watchedAddr/watchedAddr.nbx
[$[addr]:$[port]]"192.168.1.101:80":assert HomeWebHit;

}

Let’s look at two of the projection expressions in this example.

$[addr]:$[port]
assert event("whatever","$[port]","$[addr]");

In both cases, you are constructing a new string by combining constant strings with variable
strings extracted from the input text by the regular expression. This is just a form of
symbolic substitution.

All you need to learn is what you can put in place of " " in the extracted string references
of the form $[]. The example illustrates how to reference strings matching subexpression
by a name assigned in the regular expression, for example $[port].

You can reference this same string by number, $[1]. You use 1 because it is the first subex-
pression. The $[addr] string could be referenced as $[2]. Using numbers is sometimes
more convenient because you can avoid naming the fields.

(let (\w+)=(\d+)):assert $[1]=$[2];
(let (?’attribute\w+)=(?value\d+)):assert $[attribute]=$[value];

Using names is better when a regular expression may be modified to include more subex-
pressions and when there are multiple reference to the subexpression strings. It saves having
to renumber the references.

Because the output of a translator are NodeBrain commands, a translator quietly performs
a usually helpful character substitution—single quote replaces double quote. This means
you can a projection like the following without worrying about generating a NodeBrain
syntax error when the captured string contains a double quote.

assert hostname="$[hostname]";

104 NodeBrain Language

Chapter 9: Translators August 2014

Seldom, but in some cases, you want to override this hidden operation. You can do this
by following the string identifier with a comma and two characters. If the characters are
identical there is no character replacement.

(let (\w+=(d\+|".*?")):assert $[1,..]

If you need an alternate character substitution, you specify a "find" character followed by
a "replace" character. In the following example, you assert a single quoted term using an
extracted value that may contain a single quote. So in this case, you want to replace single
quotes with double quotes.

(value: "(?’value.*?)"):assert $[value,"]=1;

In addition to using names and numbers to identify matched strings, you can use a few
special symbols to extract some strings that are not actually matched.

$[-] - input to last regular expression match $[-] = $[<]$[~]$[>]
$[~] - match portion of $[-] that matched last regular expression (...)
$[<] - head that portion of $[-] before $[~] . . . (...)...
$[>] - tail that portion of $[-] after $[~] ...(...). . .
$[=] - buffer for next match - defaults to $[>] set by [assignment]

Suppose you have an input line and translation rule as shown below.
Input: "this tells the story from abc to xyz"

Rule: (the story from (\w?))[$[<]] {
"this tells ":assert tail="$[>]"
"that tells "
"and so ends ":assert found="$[=]";
:alert NotRecognized="$[-]",matched="$[~]";
}

Within this rule’s inner block, the following values are associated with the special variables.
$[-] = "this tells the story from abc to xyz"
$[~] = "the story from abc"
$[<] = "this tells"
$[>] = "to xyz"
$[=] = "this tells"

By default, a new buffer $[=] is set to the tail $[>] when a regular expression matches. This
is convenient in situations where logs contain messages for multiple events with a common
prefix.

(^(?’time\d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d)) {
(soup spilled)
(nuts eaten)
(salad ready):assert saladReady,at="$[.time]";

}

9.4 C Program Comparison

It may be helpful for you to compare the syntax of a translation script with the syntax of
a C program. If you are not familiar with C, skip this section.

NodeBrain Language 105

August 2014 Chapter 9: Translators

Statement
Type

C NodeBrain
Translator
(*.nbx)

Comment // text • # text •
Include #include <file> $file •
Function
Call func-
tion(arguments);
~file •
Shell
Command

system(command); : command •

Assignment a=1; :assert a=1; •
s1="abc"; s2="def"; ((?’s1abc).*(?s2def))
sprintf(text,"%s%s",s1,s2)[$[s1]$[s2]] state-

ment •
Block { statement statement

. . . }
label{ •
statement •
statement • . . .
} •

If if(condition)
statement

"value"
statement •
–or– @(regex)
statement •

if(condition) { state-
ment return; }

"value"
statement • –or–
(regex) statement
•

Although perhaps not obvious from the comparison above, the syntax of a NodeBrain
translator is far more limited than a general purpose language like C. The goal of any
special purpose language is to simplify life by working within a model where many elements
of the problem are known implicitly and therefore need not be explicitly stated. Some of
the key assumptions (limitations) are listed here.

1. All conditions test whatever is in the text buffer using a single comparison string or a
regular expression. These conditions do not support variables, relational operators, or
Boolean operators.

2. Variables, other than the text buffer, are only assigned by regular expression match-
ing, and only used for symbolic substitution in NodeBrain commands and text buffer
assignments. All other variable assignment must be delegated to the NodeBrain in-
terpreter as assertions and, as stated in assumption 1, may not be tested within the
translator.

106 NodeBrain Language

Chapter 9: Translators August 2014

9.5 Flow Control Statements

It may help to understand the flow of translation statements if you chart out a simple
example using italicized words to represent the encapsulated constructs.

label(regex1) {
[assign] {
(regex2):cmd1
: cmd2

}
@(regex3)"value":cmd3
: cmd4

}

NodeBrain Language 107

August 2014 Chapter 9: Translators

The following diagram shows the logic represented by the script above.

108 NodeBrain Language

Chapter 9: Translators August 2014

Translators are intended primarily as a way to uniquely identify a line of text and provide
a single response. For this reason, the default behavior on a true condition is to execute
the subordinate statement and terminate. A simple translator is just a series of patterns
to match to the text buffer. The statement following the first matching pattern is executed
and the translator stops.

"value" statement

"value" statement

...
(regex) statement

(regex) statement

...

However, in some cases you will want to match a line of text to multiple patterns and take
the action associated with each. This can be done as follows.

@"value" statement

@"value" statement

...
@(regex) statement

@(regex) statement

...

The continue statement, @, performs the subordinate statement and continues to the next
statement even if a match was found in the subordinate statement.
The unconditional branch statements, assign and label, have a slightly different default be-
havior than the conditional branch statements. The unconditional branch statements con-
tinue to the next statement by default if a match is not found in the subordinate statement.
In the following example, the statement in the third line will execute if the subordinate
statement of the assign and label statements, a (regex) statement in both cases, doesn’t
find a match.

[assign](regex) statement
label(regex) statement
statement

However, like the conditional branch statements, you can use a "continue" statement to
ensure they continue to the next statement when a match is found in the subordinate
statement.

@[assign](regex) statement
@label(regex) statement
statement

The only other flow control statement is the block statement, which groups a list of state-
ments into a single statement.

(regex) { # if regex is true, execute block and terminate
statement

statement

}
@(regex) { # if regex is true, execute block and continue
statement

NodeBrain Language 109

August 2014 Chapter 9: Translators

statement

}

label{ # execute block and continue if no match
"value" statement
(regex) statement
(regex) statement
}

@label{ # execute block and continue
"value" statement
(regex) statement
(regex) statement
}

The flow of control within a block is the same as it would be outside of a block—the block
functions like a subordinate translator.

9.6 Translation Tables and Trees

Translator statements are defined recursively, where statements often contain subordinate
statements. A translator script not only has a top to bottom sequence of statements but
a statement can have a left to right sequence of elements that form multiple statements
within the recursive definition.

Statement: label(regex)[assign]"value":command

Recursion: |-statement-|
|---statement-------|

|---statement----------------|
|---statement------------------------|

|---statement------------------------------|

A subordinate statement refers to a statement within a statement. More specifically, a
subordinate statement is the statement to the right of a statement’s first element.
You can think of the individual elements that make up a complex statement as cells in a
table. Imagine a translator script as a table of complex statements, where each complex
statement is a row in the table, and each element of a statement is a cell in a row.

Statement: label(regex)[assign]"value":command

Table: cell cell cell cell cell

Under this model, cells execute left to right, and return True or False values from right to
left.
It gets a bit more complicated when you consider that while a statement has only one
subordinate statement; a subordinate statement may be a block statement as illustrated
here.

label{
(regex) {

110 NodeBrain Language

Chapter 9: Translators August 2014

[assign] {
"value1" {

: command1

: command2

}
"value2":command3
}

: command4

}
}

You can adapt to this concept by thinking of a translation table, where the elements are
cells, as a translation tree, where the elements are nodes.

Statement: label(regex)[assign]" value1":command1
| | |
| | : com-

mand2

| |
| "value2":command3
|

: command4

Tree: node node nodes nodes nodes

Subordinate statements are now branches of the tree. You have elected to represent child
nodes as a vertical list, because they execute in a top to bottom order. This means "value1"
and "value2" are children of [assign]. The command1 and command2 nodes are children
of "value1". When represented this way, each node has a single subordinate branch of the
tree and a next sibling link.

Within a branch, you execute nodes in a left to right, top to bottom order. Subordinate
branches return a True or False value to their parent node (right to left). When a True value
is returned to a node other than @, a True value is returned to the parent. When a False
value is returned to an unconditional node, processing continues with the next child node
(top to bottom). A @ node always continues to the next child node when the subordinate
branch returns. A conditional node returns True on a match, ignoring the return value
from the executed subordinate branch. A conditional node continues to the next child node
when the match fails. If the end of a child node list is reached, a value of False is returned
to the parent node.

You can specify the translation tree above as a table, not using block statements, but may
get a little confused about flow of control. Are the last three statements reachable with a
common value of (regex)? That topic is addressed in the next section.

Statement: label(regex)[assign]"value1":command1
Statement: label(regex)[assign]"value1":command2
Statement: label(regex)[assign]" value2":command3
Statement: label(regex):command4

NodeBrain Language 111

August 2014 Chapter 9: Translators

9.7 Statement Reordering

In the previous section, the notion that a translator is a collection of nodes organized as
a tree structure was introduced. Furthermore, translator statements are interpreted as
"transactions" that update a translation tree.

Here’s an example of a valid translator script coded as a table, not using block statements.

(regex1)[assign1]"value1":command1
(regex1)[assign1]"value1":command2
(regex2)[assign2]"value1":command1

Here’s the same translator script after it is compiled (loaded by the interpreter) and orga-
nized as a tree.

(regex1)[assign1]" value1" {
: command1

: command2

}
(regex2)[assign2]"value1":command1

If the compiler left the script in the original form, you would not get the desired result. In
fact, command2 would be unreachable, because whenever (regex1) is true NodeBrain would
terminate without executing the second statement.

Instead, the compiler ensures that there is only one branch node with a given specification
in the first column of a block. This can cause a "reordering" of statements. Consider the
following translator.

"abc":assert abc;
"def":assert def;
"abc":assert cba;
(abc):assert containsAbc;
(def):assert containsDef;
(abc):assert containsCba;

After it is compiled, it looks like this.

"abc" {
:assert abc;
:assert cba;
}

"def":assert def;
(abc) {

:assert containsAbc;
:assert containsCba;
}

(def):assert containsDef;

It is important to understand this reordering. Otherwise, it may not always produce the
desired result. For the "value" statements above, it is hard to imagine a different intended
result, since the second "abc" would be unreachable if not combined with the first, and the
order of the commands associated with "abc" ("assert" commands in this case) is preserved.

112 NodeBrain Language

Chapter 9: Translators August 2014

However, for the (regex) statements, you can imagine more than one possible expectation
of the original ordering. If an input text line contains both (abc) and (def), you may want
to execute the assertions in the specified order. If so, you can achieve this with a bit more
effort. By putting a label on the first (abc) statement, it no longer merges with the second
because it is on a different branch introduced by the label. But the label, by itself, would
make the second (abc) unreachable. So you use a "continue" statement on the first (abc)
and the (def) statement to make the second (abc) reachable for input containing both (abc)
and (def).

@bob(abc):assert containsAbc;
@(def):assert containsDef;
(abc):assert containsCba;

Now you have preserved the original order and ensured that each statement is reachable.
It is appropriate that this be the more difficult intention to implement, because you assume
it is the least frequent intention. It is more often the case that you only need to test input
text for a given condition once.
Here is an alternate solution for the same intention where you include a second (def) state-
ment.

(abc) {
:assert containsAbc;
(def):assert containsDef;
:assert containsCba;
}

(def):assert containsDef;

This isn’t all the potentially unhelpful help the compiler demands to provide. It also assumes
that you should match values before regular expression. So the following translator is also
reordered.

(a.*c) statement

(de(f|d)) statement

"abc" statement

"zyz" statement

Here’s what the compiler decides is better.
"abc" statement

"zyz" statement

(a.*c) statement

(de(f|d)) statement

The compiler’s preference is usually better because when there is a large number "value"
statement, the translation engine can quickly determine, which, if any, value matches the
input by performing a binary search. If there is no value match, then it can continue with
the less efficient regular expressions.
Once again you can force the compiler to preserve the original order by using a labeled
blocks as shown below. Now the "value" statements are at the top of their block as the
compiler insists, and they are executed after the (regex) statements, as you may insist.

@reStmts{

NodeBrain Language 113

August 2014 Chapter 9: Translators

(a.*c) statement

(de(f|d)) statement

}
valueStmts{

"abc" statement

"zyz" statement

}

You may, or may not, want the "continue" on the "reStmts" block. If not, you could simply
remove the block.

(a.*c) statement

(de(f|d)) statement

valueStmts{
"abc" statement

"zyz" statement

}

Now the "abc" is unreachable, but that may be intentional, particularly if the value state-
ments are managed as a separate translator. The goal may be to intercept the values
matching the regular expressions to prevent the value statements from responding to those
cases. Here you have removed to (regex) subordinate statements to suppress response
instead of providing an alternate response. Either would be reasonable.

(a.*c)
(de(f|d))
valueStmts~plan/watchedValues/watchedValues.nbx

The important thing is to understand how the compiler reorganizes a translation script so
you can direct it to do what you want.

9.8 Transactions

When a translation script (*.nbx file) is loaded, each statement is processed as a transaction
applied to the translator tree structure, which is initially empty. By default, each statement
is an "insert at bottom" transaction. Each element of a statement is used as a key to select
an existing branch node or create a new branch node at the bottom of a block. You could
explicitly state that you are adding a node at the bottom of a block by preceding it with a
greater than symbol (>).

Insert at bottom
(abc.*?(\d+))>"abc"

If you want to insert a node at the top of a block, use a less than symbol (<).

Insert at top
(abc.*?(d\+))<"abc"

The equal symbol (=) is used to replace the contents of a branch or leaf node.

Update transaction
(abc.*?(d\+))="abc"
"abcdef".27=:assert x=1;

114 NodeBrain Language

Chapter 9: Translators August 2014

A branch node may be deleted ("pruned") by preceding it with a vertical bar (|). The
examples below illustrate the deletion of a value node, regex node, and leaf node (command
or file link).

Delete transactions
(abc.*? (\d+))|"abc"
Fred.(abc.*?(\d+))[$[1]] | (def (\w+))
"abcdef"|5

Note that operations on a leaf node require identification by "line number" within a block.
This is because leaf nodes are not uniquely identified by their text since a command may
be repeated within a block.

More types of transactions are listed in the next section.

9.9 Translator Quick Reference

This one page summary is a handy reference. It also seems to validate the claim—the
translation language is quite small.

Statements
*- Four concepts sufficient for most translation tasks

"string" - Branch on string match
(regex) 1- Branch on regular expression match
[assign] - Branch unconditionally after projecting new text buffer
label - Branch unconditionally (unconditional branches "fail thru")

{ 2- "Begin" statement block
} - "End" statement block

:command 3- "Command" NodeBrain interpreter---see projection
$file - "Include" statements from file
~file - "Link" to another translator

Projection 4- Compose string from matched text and literal text
[[to here: make subordinate to projection]]

$[-] - Input - full input string
$[~] - Match - String that matches (regex) --(...)---
$[<] - Head - string before $[~] ...(regex) if $[-] before first match
$[>] - Tail - string after $[~] (regex)... is $[-] before first match
$[=] - Assigned text buffer is $[>] before assignment
$[1] - String matching first sub-expression (...(subexpr)...)
$[n] - String matching n’th sub-expression
$[name] - String matching a named sub-expression (?’ name...)
$[_,FR] - Replace character F with character R, where _ is -|~|<|>|=|n

F is " and R is by default
$[.?] - One prior to most recent ancestor regex - ? is any of the above
$[..?] - Two prior to most recent ancestor regex

NodeBrain Language 115

August 2014 Chapter 9: Translators

$[...?] - Can continue up from any depth of regex nesting

Control

@branch - "Continue" even if branch returns true
!stmt - Ignore statement - like commenting to end of statement

Transactions

path - branch.branch.branch[.n]
path.stmt - Insert statement reusing existing branches
path?stmt - Show branch after processing statement
^path - Verify path exists
^path+@ - Set "continue" option on branch
^path-@ - Clear "continue" option on branch
^path+! - Set "disabled" option on branch
^path-! - Unset "disabled" option - enable
^path|branch - Prune (delete) branch
^path|n - Prune (delete) leaf statement n (see path)
^path>stmt - Insert at end of branch or after leaf statement n
^path<stmt - Insert at start of branch or after leaf statement n
^path=stmt - Replace branch or leaf statement n within branch

116 NodeBrain Language

Chapter 10: Symbolic Substitution August 2014

10 Symbolic Substitution

NodeBrain supports multiple forms of symbolic substitution: preprocessor, substitution
command, cell definition, cell value, macro, and translator string. Each has a unique syntax
as indicated in the right column of boxes in the figure below.

NodeBrain Language 117

August 2014 Chapter 10: Symbolic Substitution

10.1 Preprocessor Substitution� �
Syntax

SubstituionCmd::= % s* . . . SymbolicExpression . . .
processSubstitution::= %{ cellExpression }
 	
Preprocessor terms are defined in a separate dictionary from rule terms. They may be
assigned values as arguments to nb, as arguments to a rule file, and within a rule file using
the %assert directive or the assert command.

nb a=1 b="abc" myscript [global process terms "a" and "b"]

nb myscript,a=2,b=3 [local process terms "a" and "b"]

%assert a="hello"; [directive]

assert %a="hi"; [preprocessor term defined from rule context]

Preprocessor substitution is accomplished by enclosing a term in braces preceded by a
percent symbol: "%{term}".

% define x cell "%{a}";
% define %{a} cell 17;

Preprocessor substitution applies to rule files, including standard input (stdin). It is per-
formed on every line of a file before it is processed in any other way, completely independent
of command syntax.

This substitution does not apply to commands received by listeners. This is primarily
because the notion of conditional interpretation, at least in the form of the multi-line %if
directive, doesn’t apply well to commands arriving at a listener. However, the global process
term dictionary is available to all commands. The ability to update it depends on one’s
authority, but read access is available to any identity with the ability to issue a command.
You will see in the next section how global process terms can be used in symbolic string
substitution of a different form.

10.2 Substitution Command� �
Syntax

SubstitutionCmd::= $ s* . . . SymbolicExpression . . .
SymbolicExpression::= ${ cellExpression }
 	
String substitution based on cell expressions using terms in the rule dictionary is performed
by the substitution command. This step provides a method of composing a command
before it is parsed, but an explicit request is required to avoid unnecessary overhead. A
symbolic expression of the form ${cellExpression} is replaced by a string representing the
value of cellExpression within the active context. For efficiency in handling most commands

118 NodeBrain Language

Chapter 10: Symbolic Substitution August 2014

that do not use symbolic substitution, NodeBrain requires an explicit request for symbolic
substitution by starting a command with $ followed by a space.

assert a="abc",b=123.45,c=0.55;
$ assert ${a}=${b},xyz="${b}",n=${b+c};

assert abc=123.45,xyz="123.45",n=124; # command after substitution

We elected not to follow the common practice of using an escape character to delay or
prevent substitution (e.g., "\\\$a"). Instead, NodeBrain uses multiple dollar signs ("$${")
to delay substitution, giving the programmer control over when substitution occurs.

... ${term} Symbolic substitution is performed on first request

... $${term} Symbolic substitution is performed on second request

... $$${term} Symbolic substitution is performed on third request

Each time symbolic substitution is requested the number of $ symbols is reduced by one.
$... $${term} Before substitution
... ${term} After substitiution
$... $$${term} Before substitution
... $${term} After substitution

When a substitution request is presented to the interpreter, substitution is performed left
to right from the first character to the last character, independent of the statement syntax.

> define x cell "def"
> define y cell "ine z"
> $ ${x}${y} cell "abc"
substitution define z cell "abc"

In context stacks, substitution is performed in the active context. Reduction is followed by
symbolic substitution within the new context. When reduction is specified in the action
command of a rule, reduction (but not substitution) is preformed in advance (at the time
the rule is interpreted).

> define x cell "abc"
> $ define r1 on(a="${x}"):$ - echo x=$${x} was ${x}
substitution define r1 on(a=1):$ - echo x=${x} was abc
> assert a=1,x="xyz";
... rule r1 fires ...
rule r1 action > $ - echo x=${x} was abc
substitution - echo x=xyz was abc
x=xyz was abc

This form of symbolic substitution, while normally used with rule dictionary terms, can
also be used with terms in the process dictionary. This is because a global process term is
accessible from any rule context in the form %term.

%{term} - Process string substitution only for rule files.

${%term} - Cell string substitution available anywhere.

To avoid getting a local process term, your can explicitly specify back up to the global
context.

${%..term} - Bypass local terms if any.

NodeBrain Language 119

August 2014 Chapter 10: Symbolic Substitution

10.3 Cell Definition Substitution� �
Syntax

cellDefSubstitution::= . . . $term . . .
 	
When an identifier in a cell expression is preceded by a dollar sign ($), it is called a symbolic
cell name and is interpreted as if the identifier’s current definition had been specified. You
illustrate this with a sequence of three assertions, first without a $ and then with it.

without "$"
assert a=2,b=3,x==a*b;
assert y==x+21;
assert x==a+b; # this assertion changes y

with "$"
assert a=2,b=3,x==a*b;
assert y==$x+21; # same as y==(a*b)+21
assert x==a+b; # no change to y

Use of symbolic cell names only impacts assertions using == since = resolves the current
value of the cell expression anyway.

assert a=2,b=3,x==a*b;
The next three statements produce the same result: y=27
assert y=$x+21;
assert y=x+21;
assert y=27;

Statement parsing and execution are two distinct phases. Cell names are replaced by the
parser using their current definition. This is illustrated by the following example. The
definition of x is not changed to (a*b) until the statement is executed, so $x is replaced by
the parser with the current definition of x at parse time: (a+b).

assert x==a+b;
assert x==a*b,y==$x+21; # y==(a+b)+21

In the previous example, execution directly follows parsing, but this is not the case with
rules. In the following example, x may take on many definitions between the time the
rule is parsed and the time the rule fires and performs the assertion. Because substitution
occurs at parse time, changes to x after the rule is parsed have no impact on the assertion
performed when the rule fires.

assert x==a+b;
define r1 on(a>5 and b<20) x==a*b,y==$x+21; # y==(a+b)+21
assert x==a/b;
...

Command actions (e.g., on(condition):command) are parsed when the rule fires.

120 NodeBrain Language

Chapter 10: Symbolic Substitution August 2014

10.4 Cell Value Substitution� �
Syntax

cellValueSubstitution::= . . . $(cellExpression) . . .
 	
When a symbolic cell expression "$(cellExpression)" is specified within a cell expression, it
is replaced by the current value of the symbolic cell expression.

assert a=2,b=3,?c;
assert y==$(a*b)+c; # same as y==6+c;

Like symbolic cell names, a symbolic cell expression is only useful when defining a term
using the == operator, since = resolves the current value of the cell expression anyway.

10.5 Macro Substitution� �
Syntax: Macro Definition

MacroDefinition::= define term macro ["(" MacroParameters
")"] : MacroSequence

MacroParameters::= MacroParameterList [: MacroDefaults]
MacroParameterList::= identifier { , identifier }
MacroDefaults::= assertion { , assertion }
assertion ::= identifier (= | ==) cellExpression
MacroSequence::= MacroItem [MacroSequence]
MacroItem ::= MacroSymbol | MacroCharacter
MacroSymbol::= %% "{ " identifier "}"
MacroCharacter::= Any character other than \0 and \n, ex-

cept % followed by "%{"
 	� �
Syntax: Macro Command

MacroCommand::= $term ["(" MacroArguments ")"] [;]
MacroArguments::= MacroArguementList [: MacroAssertions]
MacroArgumentList::= identifier { , MacroArgumentList i}
MacroAssertions::= assertion { , assertion }
assertion ::= identifier (= | ==) cellExpression
 	
A macro is defined to provide a model for macro command expansion. A macro command
accepts positional arguments or keyword arguments. In the following example, m1 is defined
to have two positional parameters (a and b) and one keyword parameter (c);

define m1 macro(a,b:c=5):assert x=%%{a}*%%{b}/%%{c};

When you use a macro, you must specify the expected number of positional arguments, but
the keyword arguments are optional.

> $m1(2,7);
$ assert x=2*7/5;

NodeBrain Language 121

August 2014 Chapter 10: Symbolic Substitution

> $m1(3,5:c=12);
$ assert x=3*5/12;

Macros may be used as a typing shortcut, a way of making code easier to read, or to provide
a common point of maintenance. Consider the following macro for alerting an alarm node.

> define myalert macro(text:severity="normal",group="OS") ...
... alarm. alert severity="%%{severity}", ...
... group="%%{group}",text="%%{text}";

Here we show the use of this macro and the expansion.
> $myalert("Hello");
$ alarm. alert severity="normal",group="OS",text="Hello";

122 NodeBrain Language

Appendix A. Special Symbols August 2014

Appendix A. Special Symbols

This appendix shows how special symbols are used in the context of various constructs of
the language. An alpha character string is indicated with "a", a string of numeric digits
with "9", and a cell expression with "e". We reference the following contexts as constructs
within the language.
Source - Anywhere in a source file or

macro string
Command - Anywhere in a command line
Substitution - Within a symbolic substitu-

tion expression ${. . .}
Verb - First non-blank characters of

a command following context
prefix.

Type - Where a type is expected in a
define or declare statement.

Identifier - Where an identifier is
expected.

Cell - Cell expression, when not in
one of the following contexts.

Sequence - Within a sequence {. . .}
TimeSeq - Within a time sequence

~{. . .} or ~(. . .{. . .}. . .)
TimeExpr - Within a time expression

~(. . .).
We are still considering the ideas in boldface—they have not been implemented.

Symbol Context Description
%{9 . . .} source Positional parameter symbolic

substitution

%{a . . .} source Local term symbolic substitution
%a source Source Directive (column 1)
${. . .} command Symbolic substitution directive
{. . .} substitution Nested symbolic substitution directive
verb Comment
$. . . verb Symbolic substitution directive
$a(. . .) verb Macro expansion directive
a. verb Context prefix
^ verb Direct message to stdout
- verb Execute a host command
= verb Spawn a process to run a host command
=[a] verb Spawn a process switching users
a: . . . verb Direct a command to a node
‘ verb Abbreviation for assert (backtick)
{ verb Sequence {. . .}—starts a thread

NodeBrain Language 123

August 2014 Appendix A. Special Symbols

%a identifier Local term
a.a identifier Glossary selection—separates levels of

qualification
.a identifier Term in active context glossary
..a identifier Term in parent context glossary
.a identifier Term in root context glossary

’. . . ’ identifier Term containing special symbols
a identifier Special terms created by nodes

% a identifier Special built-in local terms (e.g.,
% hostname)

Symbol Context Description
". . ." cell String
(. . .) cell Subordinate cell expression
$a cell Symbolic reference to the definition of a
$(e) cell Cell expression evaluated at parse time
& cell Boolean operator—AND
| cell Boolean operator—OR
! cell Boolean operator—NOT
^ cell Flip-flop operator
~(. . .) cell Time condition
~{. . .} cell Time sequence
~^(. . .) cell Time Delay Condition—delay transition

to True
~^!(. . .) cell Time Delay Condition—delay transition

to False
~^?(. . .) cell Time Delay Condition—delay transition

to Unknown
{. . .} cell Sequence
; Sequence Statement terminator
* Sequence Repeat indefinitely
=e; Sequence Set value to cell expression
‘. . . ; Sequence Assertion (backtick)
: . . . ; Sequence Command
/ Sequence Set value to True
\ Sequence Set value to False
{. . .} Sequence Sequence block
(. . .) Sequence Time condition
} Sequence Sequence terminator
+ TimeSeq Sign for time unit multiplier
- TimeSeq Sign for time unit multiplier
/ TimeSeq Set value to True
\ TimeSeq Set value to False
({. . .) TimeSeq Time condition
{. . .} TimeSeq Sequence block

124 NodeBrain Language

Appendix A. Special Symbols August 2014

} TimeSeq Sequence terminator

Symbol Context Description
=a TimeExpr Prefix Operators
|
#
!
&
~
%
, Infix Operators
.
!
#
&
|
%
[. . .] TimeExpr Index List (indexed selection)
, TimeExpr Index List Index union and range separators

..
(. . .) TimeExpr Sub-expression
a (. . .) TimeExpr Sub-expression
, TimeExpr Parameter List Parameter union and range separators

..
/ TimeExpr Parameter Parent parameter separators: day(12/25)

hour(12@10) minute(12:10)
@
:

NodeBrain Language 125

Appendix B. Transitional Features August 2014

Appendix B. Transitional Features

In many situations, an awareness of transitional features helps to explain the interpreter’s
response to an otherwise undocumented syntax. These features fall into three categories:
(1) experimental, (2) deprecated, and (3) obsolete. The first two categories are supported
by the interpreter, but you should avoid them. Avoid experimental features (except for
experimentation) because the design is unstable and perhaps not fully implemented. Avoid
deprecated features because they have been replaced and will eventually be obsolete. Obso-
lete features are not supported by the documented release, but were supported by an earlier
release.

B.1 Experimental Features

An expression evaluation shortcut makes it easy to test expressions.

?(expression)

A command option prefix allows options to be set for processing individual commands.

(trace,. . .) command

Logging options are supported at the node (context) level. If you don’t need or want an
audit log of every rule that fires, you can turn off the audit trail.

context. use(hush)
context. use(!hush)
context. use(audit)
context. use(!audit)
context. use(trace)
context. use(!trace)

A global "audit" option sets a default option for all nodes. There are eight silly ways to set
one option on or off.

nb -a [audit]
nb -A [noAudit]
nb --audit
nb --noAudit

set a
set A
set audit
set noAudit

The default is "audit" (on). There is no harm in leaving audit on unless you decide it is
just spitting out too much information. Once your rules have been tested, you can switch
to the -A option.

#!/usr/local/bin/nb -A
...

NodeBrain Language 127

August 2014 Appendix B. Transitional Features

B.2 Deprecated Features

Use of a deprecated syntax will still work but will generate a warning message. You should
update your rule files to the current syntax to avoid problems later when the old syntax
becomes obsolete.

Avoid the use of "expert" when defining a node.

Deprecated:
> define term expert ...;

Current:
> define term node ...;

Avoid the use of a double question mark (??) for the Unknown value. Use a single question
mark (?) instead.

Avoid the use of a double tilde (~~) for regular expression matching. Use a single tilde (~)
instead.

B.3 Obsolete Features

If you have NodeBrain rules that use obsolete features, the current interpreter will normally
generate error messages. It is possible, particularly if you upgraded NodeBrain skipping
multiple releases without upgrading your rules, that an old syntax has been reintroduced
with a new interpretation.

Avoid defining listeners. Instead, define nodes using the associated skill. Skills are docu-
mented in the NodeBrain Module Reference.

Obsolete:
> define term listener type="type",...;

Current:
> define term node skill (...);

Listener Type Node Skill
FIFO pipe.reader
LOG audit
NBP peer.reader
NBQ peer
SMTP smtp.reader

Avoid declaring brains. Instead, define a peer node.

Obsolete:
> declare term brain...;

Current:
> define term node peer(...);

Avoid using remote command prefixes. Instead use peer node commands.

Obsolete:
> >brain command

128 NodeBrain Language

Appendix B. Transitional Features August 2014

> \brain command

> /brain command

Current:
> node: command

Avoid the portray command. The peer skill portrays the identity specified in the node
declaration.

Obsolete:
> portray identity;

Current:
> define term node peer("identity@...");

Use the -: or =: commands instead of the consult command.
Obsolete:
> consult consultantScript

Current:
> -: servantScript

The address command is no longer supported to address subsequent interactive commands
to a specific local or remote context. See the single quote special symbol command for
similar functionality.
The define statement no longer recognizes the previously deprecated types of context,
condition, or string. The context type is replaced by node, although the deprecated
expert is still supported. The condition and string types are replaced by cell.
The following commands are obsolete.

default - see %default directive
let - see %assert directive

The + prefix is obsolete for node commands.
Obsolete:
> +node(argList):command

Current:
> node(argList):command

Nested substitution expressions require reduction directives. The old syntax was aban-
doned because it was seldom used and incompatible with the transition to supporting cell
expressions for symbolic substitution instead of just simple terms.

Obsolete:
> ... ${{term1}{term2}}

Current:
> $... $${${term1}${term2}}

The system and exec commands are no longer supported. See - and = special symbol
commands. These are collectively called the "servant" command.

NodeBrain Language 129

August 2014 Appendix B. Transitional Features

Obsolete:
> (system|exec) shellCommand

Current:
> (-|=)shellCommand

A context prefix may no longer be terminated by a space. In earlier releases a defined
context (node name) was recognized in the place of a verb. It will now be interpreted as a
verb unless terminated by the folliwng symbols:

. , (:

Obsolete:
> context verb body
> fred define r1 on(a=1 and b=2);

Current:
> verb body
> define rer1 on(a=1 and b=2);

> context . verb body
> fred. define r1 on(a=1 and b=2);

> context [(args)]:command
> fred(1);
> fred:command
> fred(1):command

130 NodeBrain Language

Index August 2014

Index

#
(Comment) . 87

$
$ (Substitution) . 91

%
% (Directive) . 92
%assert directive . 94
%default Directive . 94
%if Directive . 95
%include directive . 96
%quit directive . 96
%use directive . 97

-
- or = (Servant) . 88

>
> (Prefix) . 87

^
^ (Output Message) . 87

‘
‘ (Assert) . 87

\
\ Line Continuation Directive 97

A
Alert . 61
And . 50
Archive . 63
Assert . 63

B
Boolean Function of Time . 34

C
C Program Comparison . 105
Calendar Declaration . 65

cell . 2
Cell Definition . 69
Cell Definition Substitution 120
Cell Evaluation . 8
Cell Value Substitution . 121
Combining Range, Span, and Parent Parameters

. 42
Command Processing . 7
Commands . 61
Concept Review . 37
condition . 3
Conditional Operators . 22
Conflict . 45
Connect . 46
Contexts . 17
createService . 84
cycles . 12

D
Declare . 64
define . 68
Delay Operators . 28
deleteService . 85
Deprecated Features . 128
Dictionaries . 16
Disable . 74

E
Enable . 75
Enabled Monitoring Operators 24
Encapsulation Symbols . 100
Exit . 75
Experimental Features . 127

F
false . 1
Flip-flop Operator . 26
Flow Control Statements . 107
Forecast . 76
Formula . 2
Formulas . 19
Functions . 35

G
Glossaries . 16

H
Hour, Minute, Second . 44

NodeBrain Language 131

August 2014 Index

I
Identifiers . 15
Identity Declaration . 64
If-Rule Definition . 71
Index Lists . 38
Index Ranges . 38
Indexed Selection . 37
Infix Operators . 47
Interval Selection Parameters 38

L
Language Concepts . 1
Literal Identifiers (Strings and Numbers) 18
Load . 77

M
Macro Definition . 73
Macro Substitution . 121
Millennium, Century, Decade, Year 42
Module Declaration . 65

N
Nerve Definition . 69
Node Definition . 70
node sentence formulas . 30
Nodes and Node Modules . 12
Normal Set . 35
Normalize . 47
Not . 46
number . 1

O
Obsolete Features . 128
On-Rule Definition . 71
Operators . 36
Or . 50
Overlap . 47

P
Parameter Lists . 40
parameters . 36
Parent Parameters . 41
Partition . 46
Partitioned Set . 34
Prefix Operators . 45
Preprocessor Substitution . 118
Projection Expressions . 104
Pulse Conditions . 52

Q
Quarter, Month, January through December . . . 43

Query . 78

R
Range Parameters . 40
Rank . 78
Rejection . 49
Relational Operators . 19
Rule . 5
rule conflicts . 12
Rules . 53

S
Selection . 49
Sequence Assert Statement 58, 59
Sequence IF Statement . 60
Sequence ON and ONIF Statements 59
Sequence Publish Statement 59
Sequence Repeat Statement . 60
Sequence Rule Deficiencies . 60
Sequence Rules . 56
Sequence Rules and Correlation Threads 6
Sequence WAIT Statements 59
Set . 79
Show . 81
showenv . 84
Simple Rules . 53
Skill Declaration . 67
Source . 82
Source File Directives . 93
Span Parameters . 40
Spanned Index Ranges . 38
Special Symbol Commands . 87
Special Symbols . 123
startService . 85
Statement Overview . 102
Statement Reordering . 112
Stop . 82
stopService . 85
string . 1
Substitution Command . 118
Symbolic Substitution . 117

T
term . 3
terms . 15
Time Expression Concepts . 33
Time Expressions . 33
Time Functions . 42
Time Interval Set . 34
Time Operator . 27
Time Sequences . 51
Transactions . 114
Transitional Features . 127
Translation Tables and Trees 110

132 NodeBrain Language

Index August 2014

Translator Quick Reference 115
Translators . 99
Trinary Logic Operators . 20
true . 1
truth . 1

U
Undefine . 82
Union . 48
Unique . 47
unknown . 1
Until . 49
Use . 83

V
Value Capture Operators . 25

W
Week, Day, Sunday through Saturday 44

When-Rule Definition . 72

Windows . 84

X
Xor . 50

NodeBrain Language 133

	Language Concepts
	String
	Number
	Truth
	Formula
	Cell
	Term
	Condition
	Rule
	Sequence Rules and Correlation Threads
	Command Processing
	Cell Evaluation
	Cycles and Rule Conflicts
	Nodes and Node Modules

	Identifiers
	Term Identifiers
	Glossaries
	Dictionaries
	Contexts
	Literal Identifiers (Strings and Numbers)

	Formulas
	Relational Operators
	Trinary Logic Operators
	Conditional Operators
	Enabled Monitoring Operators
	Value Capture Operators
	Flip-flop Operator
	Time Operator
	Delay Operators
	Node Sentence Formulas

	Time Expressions
	Time Expression Concepts
	Boolean Function of Time
	Time Interval Set
	Partitioned Set
	Normal Set
	Functions
	Parameters
	Operators
	Concept Review

	Indexed Selection
	Index Lists
	Index Ranges
	Spanned Index Ranges

	Interval Selection Parameters
	Parameter Lists
	Range Parameters
	Span Parameters
	Parent Parameters
	Combining Range, Span, and Parent Parameters

	Time Functions
	Millennium, Century, Decade, Year
	Quarter, Month, January through December
	Week, Day, Sunday through Saturday
	Hour, Minute, Second

	Prefix Operators
	Conflict
	Connect
	Partition
	Not
	Overlap
	Normalize
	Unique

	Infix Operators
	Union
	Selection
	Rejection
	Until
	And
	Or
	Xor

	Time Sequences
	Pulse Conditions

	Rules
	Simple Rules
	Sequence Rules
	Sequence Assert Statement
	Sequence Command Statement
	Sequence Publish Statement
	Sequence WAIT Statements
	Sequence ON and ONIF Statements
	Sequence IF Statement
	Sequence Repeat Statement
	Sequence Rule Deficiencies

	Commands
	Alert
	Archive
	Assert
	Declare
	Identity Declaration
	Calendar Declaration
	Module Declaration
	Skill Declaration

	Define
	Cell Definition
	Nerve Definition
	Node Definition
	If-Rule Definition
	On-Rule Definition
	When-Rule Definition
	Macro Definition

	Disable
	Enable
	Exit
	Forecast
	Load
	Query
	Rank
	Set
	Show
	Source
	Stop
	Undefine
	Use
	Windows
	showenv
	createService
	deleteService
	startService
	stopService

	Special Symbol Commands
	# (Comment)
	> (Prefix)
	` (Assert)
	^ (Output Message)
	- or = (Servant)
	$ (Substitution)
	% (Directive)

	Source File Directives
	%assert Directive
	%default Directive
	%if Directive
	%include Directive
	%quit Directive
	%use Directive
	\ Line Continuation Directive

	Translators
	Encapsulation Symbols
	Statement Overview
	Projection Expressions
	C Program Comparison
	Flow Control Statements
	Translation Tables and Trees
	Statement Reordering
	Transactions
	Translator Quick Reference

	Symbolic Substitution
	Preprocessor Substitution
	Substitution Command
	Cell Definition Substitution
	Cell Value Substitution
	Macro Substitution

	Appendix A. Special Symbols
	Appendix B. Transitional Features
	B.1 Experimental Features
	B.2 Deprecated Features
	B.3 Obsolete Features

	Index

