
Pipe NodeBrain Module

Release 0.9.02

Pipe NodeBrain Module
August 2014
NodeBrain Open Source Project

Release 0.9.02

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2005-10-12 Title: NodeBrain Tutorial
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Soure Project

2010-12-31 Release 0.8.3
• Updates - still needed

Preface

This tutorial is intended for readers seeking an introduction to NodeBrain through a series
of simple examples. Other documents are available for readers looking for a more complete
reference to the rule language, modules, or API (application programmatic interface).
The intent of the examples in this tutorial is to illustrate individual concepts, not to pro-
vide complete working applications or show all related options. We avoid formal syntax
descriptions, thinking you are here because you want to figure it out from examples.
Files referenced in this tutorial are included in the tutorial directory of the NodeBrain
distribution.
See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Guide - Information on using nb
NodeBrain Tutorial - A gentle introduction to nb and the rule language
NodeBrain Language - Rule language syntax and semantics
NodeBrain Library - C API

Document Conventions

Sample code and input/output examples are displayed in a monospace font, indented in
HTML and Info, and enclosed in a box in PDF or printed copies. Bold text is used to bring
the reader’s attention to specific portions of an example. In the following example, the first
and last line are associated with the host shell and the lines in between are input or output
unique to NodeBrain. The define command is highlighted, indicating it is the focus of the
example. Lines ending with a backslash \ indicate when a command is continued on the
next displayed line. This is supported by the language within source files, but not for other
methods of command input. If you copy an example of a command displayed over multiple
lines, you must enter it as a single line when used outside the context of a source file.� �
$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";
> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\

e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NB000I Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$
 	

Table of Contents

1 Concepts . 1

2 Tutorial . 3
2.1 Defining Pipe Server Nodes . 3
2.2 Starting Pipe Server Agent . 3
2.3 Sending Commands to Pipe Server Nodes . 4

3 Commands . 7
3.1 Define . 7

3.1.1 Pipe Server Commands . 7
3.1.2 Pipe Server Rules . 7
3.1.3 Pipe Definition . 7
3.1.4 Pipe Commands . 8

4 Triggers . 9

Index . 11

Pipe NodeBrain Module i

Chapter 1: Concepts August 2014

1 Concepts

The Pipe module provides a simple unauthenticated method of communication between
NodeBrain and external programs running on the same system. A pipe server node is used
to accept input from other programs while a pipe node is used to write output to another
program. You must use file permissions on the pipe (FIFO) file for security. An identity is
associated with input commands to enable restrictions on the input commands.

Pipe NodeBrain Module 1

Chapter 2: Tutorial August 2014

2 Tutorial

To listen closely and reply well is the highest perfection we are able to attain in
the art of conversation. —Francois de La Rochefoucauld (1613–1680)

To construct a successful NodeBrain application, you must configure NodeBrain to listen
closely and respond well. The Operating Mode tutorial illustrates how NodeBrain can listen
for input commands from stdin and both input commands and error messages from servant
scripts. NodeBrain’s ability to listen is controlled by a component called the medulla. Node
modules interface with the medulla to extend NodeBrain’s ability to listen to include other
sources of input.
A pipe node is perhaps the simplest of listening nodes. It listens to a FIFO (named pipe)
file, and you can write to the pipe using any program you like, including an echo command.

2.1 Defining Pipe Server Nodes

To begin this tutorial, create an agent script called smokey.nb with two pipe server nodes
as shown here.� �
#!/usr/local/bin/nb -d

File: tutorial/Pipe/smokey.nb

-rm smokey.log

setlog="smokey.log",out=".";

declare jed identity guest;
declare chief identity owner;
define corncob node pipe.server("jed@corncob");
corncob.define r1 on(a=1 and b=2);

define peace node pipe.server("chief@peace");
peace.define r1 on(a=1 and b=2);
 	
The argument to a pipe.server is of the form "identity@pipe". Identities are associated
with listening nodes to limit the types of commands the interpreter will accept from the
node. In this example, you associate the identity jed with the corncob pipe, and the identity
chief with the peace pipe. You have declared jed to be a guest and chief to be an owner.
A guest can only connect and issue show commands—like read only access. An owner can
issue any command, including shell commands, which means they have all permissions of the
user that started the agent. For this reason, pipes are created with owner-only read/write
permissions. However, if you declare the associated identity to be a "peer," you can give
other user’s write permission on the pipe. They will be able to issue assertions and alerts
but not modify your rules or issue shell commands. You must still think through how the
agent will respond to their assertions. For example, if you create a rule that reboots the
system when a=1, then letting someone assert a=1 is the same as letting them reboot the
system.

2.2 Starting Pipe Server Agent

Now let’s start the agent. This script is executable because the -d (daemon) option is
specificied on the she-bang line. So you can just execute it like any executable and it will
load the rules and go into the background (daemonize).

Pipe NodeBrain Module 3

August 2014 Chapter 2: Tutorial

� �
$./smokey.nb

2008/06/1017:09:16 NB000I Argument [1] -d

2008/06/1017:09:16 NB000I Argument [2] ./smokey.nb

> #!/usr/local/bin/nb -d

> # File: smokey.nb

> -rm smokey.log

[13993]Started: -rm smokey.log

[13993]Exit(0)

> set log="smokey.log",out=".";

2008/06/1017:09:16 NB000I NodeBrain nb will log to smokey.log

> declare jed identity guest;

> declare chief identity owner;

> define corncob node pipe.server("jed@corncob");

> corncob. define r1 on(a=1 and b=2);

> define peace node pipe.server("chief@peace");

> peace. define r1 on(a=1 and b=2);

2008/06/1017:09:16 NB000I Source file "./smokey.nb" included. size=323

2008/06/1017:09:16 NB000I NodeBrain nb[13992,4118] daemonizing

$
 	

2.3 Sending Commands to Pipe Server Nodes

Use the echo command to send NodeBrain commands to the pipe servers.� �
$ echo stop > corncob

$ echo stop > peace
 	

The log file shows you what happened.

4 Pipe NodeBrain Module

Chapter 2: Tutorial August 2014

� �
$ cat smokey.log

N o d e B r a i n 0.9.02 (Columbo) 2014-02-15

Compiled Jun 12 2014 19:20:12 x86_64-unknown-linux-gnu

Copyright (C) 2014 Ed Trettevik <eat@nodebrain.org>

MIT or NodeBrain License

--

/usr/local/bin/nb -d ./smokey.nb

Date Time Message

---------- --

2014-06-10 17:09:16 NB000I NodeBrain nb[13994:1] myuser@myhost

2014-06-10 17:09:16 NB000I Agent log is smokey.log

2014-06-10 17:09:16 NM000I pipe.server peace: Listening for FIFO connections as chief@peace

2014-06-10 17:09:16 NM000I pipe.server corncob: ...

... Listening for FIFO connections as jed@corncob

2014-06-10 17:41:11 NM000I pipe.server corncob: FIFO jed@corncob

> corncob. stop

2014-06-10 17:41:11 NB000E Identity "jed" does not have authority to issue stop command.
2014-06-10 17:41:19 NM000I pipe.server peace: FIFO chief@peace

> peace. stop

2014-06-10 17:41:19 NB000I NodeBrain nb[13994] terminating - exit code=0

$
 	
Notice that when you sent a stop command to the corncob pipe, you didn’t have the needed
authority, but when you sent the same stop command to the peace pipe it worked.
Run smokey.nb again with the following commands to see what happens.� �
$./smokey.nb

$ echo "common. define r1 on(a=1 and b=2);" > peace

$ echo "common. assert a=1,b=3;" > peace

$ echo "common. assert b=2;" > peace

$ echo "common. show -t" > peace

$ echo "stop" > peace

$ cat smokey.log
 	

Pipe NodeBrain Module 5

Chapter 3: Commands August 2014

3 Commands

This sections describes commands used with the Pipe module.

3.1 Define

Syntax

pipeServerDefineCmd

::= define š term š node [̌s pipeServerDef] •

pipeServerDef

::= pipe.server("identity@fileName");

Identify ::= name of identity to associate with input commands

Filename ::= name of input pipe (FIFO)

The identity must be declared prior to pipe server definition. The FIFO identified by
fileName must exist when a pipe server is enabled.� �
declare fred identity ... ;

define mypipe node pipe(fred@pipe/myhose);

... include rules here...
 	
3.1.1 Pipe Server Commands

The ENABLE and DISABLE commands are supported. Node commands and assertions are
not currently supported.

3.1.2 Pipe Server Rules

Commands read from the pipe file are interpreted in the context of the pipe server node.
Rules defined in this context must be designed for compatibility with the commands written
to the pipe by the external program.

3.1.3 Pipe Definition

Syntax

pipeDefineCmd

::= define š term š node [̌s pipeDef] •

pipeDef ::= pipe(fileName);

Filename ::= name of output pipe (FIFO)

The FIFO identified by fileName must exist when a command is issued to the pipe node.� �
define mypipe node pipe("pipe/myhose");
 	
Pipe NodeBrain Module 7

August 2014 Chapter 3: Commands

3.1.4 Pipe Commands

Commands directed to a pipe node are simply written to the pipe (FIFO) file.� �
node:... any text...
 	
The ENABLE and DISABLE commands and assertions are not supported.

8 Pipe NodeBrain Module

Chapter 4: Triggers August 2014

4 Triggers

This module does not implement triggers. Each line received on a pipe is passed to the
interpretter.

Pipe NodeBrain Module 9

Index August 2014

Index

C
commands . 7

concepts . 1

D
define command . 7

P
pipe commands . 8
pipe defintion . 7
pipe server commands . 7
piper server rules . 7

T
triggers . 9
tutorial . 3

Pipe NodeBrain Module 11

	Concepts
	Tutorial
	Defining Pipe Server Nodes
	Starting Pipe Server Agent
	Sending Commands to Pipe Server Nodes

	Commands
	Define
	Pipe Server Commands
	Pipe Server Rules
	Pipe Definition
	Pipe Commands

	Triggers
	Index

