
NodeBrain Library

Release 0.8.17

NodeBrain Library
August 2014
NodeBrain Open Source Project

Release 0.8.17

Author: Ed Trettevik
Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>

Permission is granted to copy, distribute and/or modify this document under the terms of
either the MIT License (Expat) or the NodeBrain License.

MIT License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

NodeBrain License

Copyright c© 2014 Ed Trettevik <eat@nodebrain.org>
Permission to use and redistribute with or without fee, in source and binary forms, with
or without modification, is granted free of charge to any person obtaining a copy of this
software and included documentation, provided that the above copyright notice, this per-
mission notice, and the following disclaimer are retained with source files and reproduced
in documention included with source and binary distributions.
Unless required by applicable law or agreed to in writing, this software is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

History

2014-02-16 Title: NodeBrain Library
Author: Ed Trettevik <eat@nodebrain.org>
Publisher: NodeBrain Open Source Project

Release 0.8.17
• This document replaces NodeBrain API Reference first drafted in 2003 for

release 0.6.3
• Converted to texinfo format
• Dropped several function to be added back later after more complete testing.

Preface

This document is for C programmers writing extensions to NodeBrain. It describes the C
API provided by the NodeBrain Library. In most cases you can use the API to provide
new functionality in the form of a module, a plugin to the rule engine. You also have the
option of writing a skull (main program) as a replacement for the nb program included in
the distribution.

We assume the reader of this document is familiar with the content of other documents
listed below. If you are looking for information on distributed modules, they each have a
separate manual you can access via the project website.

See www.nodebrain.org for more information and the latest update to this document.

Documents

NodeBrain Guide - Information on using nb
NodeBrain Tutorial - A gentle introduction to nb and the rule language
NodeBrain Language - Rule language syntax and semantics
NodeBrain Library - C API

Caboodle NodeBrain Kit - A framework for managing rules
System NodeBrain Kit - A small sample application

Document Conventions

Sample code and input/output examples are displayed in a monospace font, indented in
HTML and Info, and enclosed in a box in PDF or printed copies. Bold text is used to bring
the reader’s attention to specific portions of an example. In the following example, the first
and last line are associated with the host shell and the lines in between are input or output
unique to NodeBrain. The define command is highlighted, indicating it is the focus of the
example. Lines ending with a backslash \ indicate when a command is continued on the
next displayed line. This is supported by the language within source files, but not for other
methods of command input. If you copy an example of a command displayed over multiple
lines, you must enter it as a single line when used outside the context of a source file.

� �
$ nb

> define myFirstRule on(a=1 and b=2) mood="happy";
> assert mood="sad";

> show mood

mood = "sad"

> assert a=1,b=2,c=3,d="This is an example of a long single line that",\

e="we depict on multiple lines to fit on the documnet page";

2008/06/05 12:09:08 NB000I Rule myFirstRule fired(mood="happy")

> show mood

mood = "happy"

> quit

$
 	

Table of Contents

1 Concepts . 1
1.1 Interface Structure . 1
1.2 Command Language . 1

1.2.1 Interactive Session . 2
1.2.2 Source Files . 2
1.2.3 Piping Commands to NodeBrain . 2
1.2.4 Piping Action Messages from NodeBrain 2

1.3 Servant Interface . 3
1.3.1 Source and Action Servants . 3
1.3.2 Servant Node Module . 3
1.3.3 Using NodeBrain as a Servant . 4

1.4 Interface Modules . 4
1.5 Library Functions . 4

1.5.1 Cerebrum . 5
1.5.2 Medulla . 6
1.5.3 Spine . 6

1.6 Selecting an Interface . 6
1.7 Methods . 7

2 Skull Functions . 9
2.1 nbStart - Start rule engine . 11
2.2 nbServe - Serve engine arguments . 11
2.3 nbStop - Stop rule engine . 11

3 Module Functions . 13
3.1 nbBind Method - Initialize module . 14
3.2 nbSkillDeclare - Register a skill . 15
3.3 nbSkillFacet - Register a skill facet . 15
3.4 nbSkillMethod - Register a skill facet method 16
3.5 nbSkillSetMethod - Bind a skill method . 17
3.6 nbVerbDeclare - Register a command verb . 18
3.7 Module Command Method - Handle a registered command verb

. 18

4 Skill Methods . 19
4.1 Alarm - Handle node alarm . 20
4.2 Alert - Handle node sentence alert . 20
4.3 Assert - Handle node sentence assertion . 21
4.4 Bind - Create a skill handle and bind methods 21
4.5 Command - Handle node command . 22
4.6 Compute - Handle node sentence computation 22

NodeBrain Library i

4.7 Construct - Handle node definition . 23
4.8 Enable - Handle node enable command . 24
4.9 Evaluate - Handle node sentence evaluation . 24
4.10 Destroy - Handle node destruction . 24
4.11 Disable - Handle node disable command . 25
4.12 Show - Handle request to display node . 25
4.13 Solve - Resolve unknowns and compute node sentence 26

5 Node Functions . 27
5.1 nbCmd - Interpret command . 27
5.2 nbListenerEnableOnDaemon - Schedule enable when daemonized

. 27
5.3 nbLogMsg - Write a message to the log . 28
5.4 nbLogPut - Write text to the log . 28

6 Cell Functions . 31
6.1 nbCellCompute - Compute value of disabled cell 31
6.2 nbCellCreate - Create cell from expression . 31
6.3 nbCellCreateReal - Create number cell . 32
6.4 nbCellCreateString - Create string cell . 32
6.5 nbCellDrop - Release cell . 32
6.6 nbCellEvaluate - Compute enabled cell value after change 33
6.7 nbCellGetReal - Get number from number cell 33
6.8 nbCellGetString - Get string from string cell 34
6.9 nbCellGetType - Get cell type code . 34
6.10 nbCellGetValue - Get enabled cell value . 34
6.11 nbCellGrab - Reserve cell . 35
6.12 nbCellSolve - Solve for value of cell . 35
6.13 nbListOpen - Open a cell list to iterate . 36
6.14 nbListGetCell - Get next cell in list . 36
6.15 nbListGetCellValue - Get value of next cell in list 37
6.16 nbSynapseOpen - Register an Alarm method 37
6.17 nbSynapseSetTimer - Set an alarm . 37
6.18 nbTermCreate - Create a new term . 37
6.19 nbTermLocate - Locate an existing term . 37
6.20 nbTermSetDefinition - Assign new definition to term 38

7 Medulla Functions . 39

8 Spine Functions . 41

Index . 43

ii NodeBrain Library

Chapter 1: Concepts August 2014

1 Concepts

This chapter provides an outline of NodeBrain interfaces to help you choose the method
most appropriate for you application. You may find that interfaces other than the C API
provided by the NodeBrain Library are sufficient for your application.

1.1 Interface Structure

The figure below illustrates the available interface options and the relationship between
NodeBrain and the components you may elect to write or use.

1.2 Command Language

The primary interface to NodeBrain is the command language. Use the command language
to specify what you want NodeBrain to do. Familiarity with the language is required for

NodeBrain Library 1

August 2014 Chapter 1: Concepts

using the interfaces described in this section. See the NodeBrain Language manual for more
information.

1.2.1 Interactive Session

An interactive session may be launched by invoking the nb program from a shell command
prompt as shown below.� �
$ nb
> command
 	
NodeBrain commands are entered in response to the command prompt ">".

1.2.2 Source Files

The easiest way to provide commands to the interpreter is by directing it to process source
files.� �
$ nb file
 	
The source command may also be used to direct the interpreter to process a source file,
provided you already have an interface to the interpreter. In interactive mode, the source
command is entered at the prompt.� �
> source file
 	
1.2.3 Piping Commands to NodeBrain

Commands may be piped to NodeBrain’s stdin using a shell command as follows.� �
$ script | nb =
 	
Pipes can also be used within a script as illustrated by the following Perl script.� �
#!/usr/bin/perl
open(NB,"| nb =")||die;
print(NB "command1");
print(NB "command2");
close(NB);
 	
1.2.4 Piping Action Messages from NodeBrain

Output directed to NodeBrain’s stdout using the ^ directive may be sent to another script
to handle required actions.� �
$ nb source | script
 	
2 NodeBrain Library

Chapter 1: Concepts August 2014

This may also be done by invoking NodeBrain from within a script as illustrated by this
Perl script.� �
#!/usr/bin/perl
open(NB,"nb source |")||die;
while(<NB>){

... take action ...
}

close(NB);
 	
1.3 Servant Interface

The servant interface is designed to enable programs and scripts written in any language to
communicate easily with the NodeBrain interpreter by reading from stdin and writing to
stdout and stderr. This is a convenient interface that you should consider as an alternative
to the C API.

1.3.1 Source and Action Servants

A source servant is any command or script that writes NodeBrain commands to stdout
to be interpreted by the invoking NodeBrain process. This is similar to CGI programs or
scripts that write HTML on stdout to a web server.� �
> -: command Interpret stdout, log stderr and send to attached client
> -|: command Interpret stdout, log stderr only
> =: command Interpret stdout, send stderr to generated output file
> =|: command Interpret stdout, log stderr
 	
An action servant is any program or script invoked by NodeBrain to perform an action—
often a rule action.� �
> - command Output to log file and attached client
> -| command Output to log file only
> = command Output to generated output file
> =| command Output to log file
 	
See the NodeBrain Language manual for a complete description of the servant commands,
- and =.

1.3.2 Servant Node Module

The Servant module provides a way to define servants for repeated use, and enables the
use of pipes for both stdin and stdout. This enables a program or script to persistently
function as a source servant and/or action servant.� �
define term node servant:[|] servantCommand
 	
NodeBrain Library 3

August 2014 Chapter 1: Concepts

This is a convenient way to add functionality to a rule set using languages best suited for
implementing the needed functionality. Although a servant runs as a separate process, it is
a logical extension of the parent NodeBrain process.
This interface also enables communication between servants. One servant may write a
NodeBrain command to stdout, which when interpreted by the parent NodeBrain causes
a message to be sent to stdin of another servant.
The servant module is described in the Servant NodeBrain Module manual.

1.3.3 Using NodeBrain as a Servant

You can use one NodeBrain script as a servant to another NodeBrain script since NodeBrain
supports the trivial servant interface as both a parent and a child process. In such a case,
the text messages exchanged in both directions must be valid NodeBrain commands. This
is a way to split a NodeBrain agent into multiple processes, taking advantage of multiple
CPU’s and concurrent processing.

1.4 Interface Modules

Some of the modules distributed with NodeBrain support various ways of communicating
with the rule engine. The Mail, Pipe, Snmptrap, Syslog, and Webster modules support com-
munication via standard protocols. These can be used to communicate with non-NodeBrain
components. For example, the Webster module enables you to send commands to a Node-
Brain agent using a web browser.
In addition, the Peer and Message modules enable communication between NodeBrain
agents using NodeBrain specific protocols. It is possible for servants written in your fa-
vorite language, running under two different NodeBrain agents, to communicate with one
another via messages sent between agents using a module specific protocol without the ser-
vants having any knowledge of the protocol. For example, a servant script might write the
following command to stdout.� �
foo:bar:hello
 	
If foo is defined as a node within the parent agent that securely forwards commands to a
peer agent, and bar is defined as a servant in the peer, then hello will be sent to the peer’s
servant on stdin. If the peer-to-peer nodes were defined as foo on both ends, and the
servants were both defined as bar, then the peer servant could return a message with the
same foo:bar: prefix. The Message module supports broadcasting messages to all agents
within a cabal with assured one-time delivery.

1.5 Library Functions

The NodeBrain Library provides the C API, the topic of this manual. The C API is the
most difficult method of interfacing with NodeBrain. Although this is the least efficient
approach in terms of your time spent implementint a solution, it can sometimes provide
the most efficient solution. So while most of this chapter is intended to discourage the use
of the C API when unnecessary, you are encouraged to use it when you feel it provides the
best option for your requirements.

4 NodeBrain Library

Chapter 1: Concepts August 2014

Each function is part of one of three major logical components: Cerebrum, Medulla, and
Spine. Within each, functions are further divided into logical sets. We refer to each indi-
vidual set as an API, each larger component set as an API, and the full set provided by the
library as the NodeBrain C API.

Component Set Interface
Cerebrum Interface to interpreter

Skull Host programs interface to an embedded
rule engine

Module Module registration of callback methods
Node Interface to nodes
Cell Interface to cells
Skill Rule engine calls back to modules

Medulla Process and asynchronous IO manage-
ment (breathing and heart rate)

File Functions to add/replace/remove file
handlers to respond to files that become
ready for read or write operations.

Queue Functions to add/replace/remove file
handlers to respond to files that become
ready for read or write operations.

Process Functions that spawn and terminate
child processes and provide queued asyn-
chronous communication between the
parent and child processes. This func-
tion group makes use of the File and
Queue functions, as well as functions in
the Spine.

Wait This function group is based on the se-
lect() function on Unix/Linux and Wait-
ForMultipleObjects() on Windows.

Spine Interface to the host operating system
Servant Child process interface layered on top of

the process function group. This inter-
face is more restricted.

Process Child process interface
Network Network communications

1.5.1 Cerebrum

The Cerebrum is a subset of functions that provide the internal services of the interpreter.
These functions are intended only for C programmers wanting to extend the functionality of
NodeBrain by writing skulls or modules. A skull is a program that embeds the rule engine
and must conform to the structure imposed by the Medulla. The nb program is itself a
skull. A module is a plugin to the rule engine, providing additional capabilities.

NodeBrain Library 5

August 2014 Chapter 1: Concepts

1.5.2 Medulla

The Medulla is a subset of functions appropriate for a server application. These functions
are intended for use by NodeBrain, but may be used by other C programs. Simply include
the Medulla header (nb/nbmedulla.h) and link with the NodeBrain Library (-lnb). These
functions impose a structure on the calling program that may not be easy to incorporate
into an existing program. When the Medulla is operating in server mode it may conflict
with a program’s use of timers and IO not designed for use with the Medulla.

1.5.3 Spine

The Spine is a subset of functions that provide an interface to the host operating system,
without dependence on a NodeBrain environment. These functions are primarily intended
for use by other NodeBrain functions, but may be used by any C program. Simply include
the spine header (nb/nbspine.h) and link with the NodeBrain Library (-lnb).

1.6 Selecting an Interface

It seems wise to start with simple interfaces and move to more complex interfaces only as
necessary. If you follow this advice you will consider the interfaces in the order described
here.
Start by writing rules and using existing components.

Frequently a NodeBrain application can be accomplished using existing programs and mod-
ules. All you need to do in many cases is write your NodeBrain rules and save them as
source files. You can use most existing utilities and shell commands as action servants.
Write servants in your favorite language.

If you need to write servants, you should start by writing simple servants in your favorite
programming language—shell scripts, other scripting languages (e.g. Perl or Python), or
compiled languages (e.g. C/C++). Servants may be parent or child processes in relation
to NodeBrain, and need only conform to NodeBrain’s assumptions about stdin, stdout,
stderr. Servants are often very simple programs. Even when you write a complex servant,
you are working in a language familiar to you and the interface to NodeBrain never gets
more complicated than reading from stdin and/or writing to stdout.
Write a module to extend NodeBrain.

If you are a C programmer, and want an integrated extension to NodeBrain, write a mod-
ule. This enables you to enhance NodeBrain without modifying the interpreter. This is
significantly more complicated than writing servants, and there is a greater (although hope-
fully not great) risk of encountering compatibility issues with future releases of NodeBrain.
A module provides method functions called by the interpreter to handle assertions, cell
expressions, and commands. This enables a module to extend the language in predefined
ways.
Write a skull program to extend NodeBrain.

There may be cases where you want the NodeBrain interpreter embedded within your
program. This is generally not recommended because it requires recompiling your program
to upgrade to a new release of NodeBrain. However, if you think an integrated program is
the right approach for your application, this option is available.

6 NodeBrain Library

Chapter 1: Concepts August 2014

Modify NodeBrain.

If NodeBrain just doesn’t work for you as released, but you see a way to modify it to
make it work, this is a fine approach also. The downside of this approach is the burden
of maintaining your own copy. However, if your change could benefit others, you may be
able to escape the burden of maintenance by submitting your change as a proposal to the
NodeBrain project.

1.7 Methods

In this document, a method is a function you write for NodeBrain to call. Most methods are
passed as a callback function in a call to a NodeBrain API function. A couple are symbols
in a dynamic module that follow a naming convension enabling NodeBrain to resolve them.

NodeBrain Library 7

Chapter 2: Skull Functions August 2014

2 Skull Functions

This set of functions is used to embed the rule engine in a C program, a skull from the
rule engine’s perspective. This chapter covers only functions designed specifically for skull
programs. After starting the rule engine you may use functions described in other chapters.
An example of a skull program follows. The numstrdiff skill implements an Evaluation
method that computes the difference between the sum of all number arguments and the
sum of the lengths of all string arguments. Other types of arguments are silently ignored.

NodeBrain Library 9

August 2014 Chapter 2: Skull Functions

� �
#include <nb/nb.h>

static nbCELL numstrdiffEvaluate(

nbCELL context,void *skillHandle,

void *knowledgeHandle,nbCELL arglist){

nbSET argSet;

nbCELL cell;

double length=0;

int len=0;

int type;

argSet=nbListOpen(context,arglist);

while((cell=nbListGetCellValue(context,&argSet))){

type=nbCellGetType(context,cell); // get cell type

if(type==NB_TYPE_STRING){

len+=strlen(nbCellGetString(context,cell)); // sum string lengths

}

else if(type==NB_TYPE_REAL){

length+=nbCellGetReal(context,cell); // sum numbers

}

nbCellDrop(context,cell); // release each cell when done with it

}

cell=nbCellCreateReal(context,length-len); // create cell with difference

return(cell); // return sum of numbers minus sum of string lengths

}

static void *numstrdiffBind(

nbCELL context,void *moduleHandle,

nbCELL skill,nbCELL arglist,char *text){

nbCELL facet=nbSkillFacet(context,skill,""); // get primary facet

nbSkillMethod(context,facet,NB_NODE_EVALUATE,numstrdiffEvaluate);

return(NULL);

}

int main(int argc,char *argv[]){

nbCELL context;

context=nbStart(argc,argv);

nbSkillDeclare(context,numstrdiffBind,NULL,"","numstrdiff",NULL,"");

nbCmd(context,"define differ node numstrdiff;",NB_CMDOPT_ECHO);

nbCmd(context,"show (differ(5,\"abcdefg\",2,\"abc\"));",NB_CMDOPT_HUSH);

nbCmd(context,"show (differ(10,5,\"abcdefg\",2,\"abc\"));",NB_CMDOPT_HUSH);

return(nbStop(context));

}
 	

The output from the three calls to nbCmd above should look like this.� �
> define differ node numstrdiff;

() = -3 == differ(5,"abcdefg",2,"abc")

() = 7 == differ(10,5,"abcdefg",2,"abc")
 	
10 NodeBrain Library

Chapter 2: Skull Functions August 2014

2.1 nbStart - Start rule engine� �
nbCELL nbStart(

int argc, // standard C main routine argument count

char *argv[]); // standard C main routine arguments

Returns: Context handle for use in calls to other API functions
 	
The nbStart function is used to initialize the rule engine as specified by the arguments.
Only rule engine startup ("++") arguments are processed.

2.2 nbServe - Serve engine arguments� �
nbCELL nbServe(
int argc, // standard C main routine argument count

char *argv[]); // standard C main routine arguments

Returns: Context handle for use in calls to other API functions
 	
The nbServe function is used to process a set of rule engine arguments, ignoring startup
("++") arguments. This routine does not return until all arguments have been processed
as described for the nb program. This means if the arguments put the engine in a server
mode (daemon or servant), this function will not return until a stop command is issued in
daemon mode, or an end-of-file on stdin is reached in servant mode.

2.3 nbStop - Stop rule engine� �
int nbStop(

nbCELL context); // Context handle returned by nbStart

Returns: Rule engine exit code
 	
The nbStop function closes files and releases memory allocated by NodeBrain.
Warning: This routine is not yet fully implemented. It does not clean up the environment.
Repeated calls to nbStart and nbStop will create a major memory leak. So, you should only
call nbStart and nbStop once in your program for now.

NodeBrain Library 11

Chapter 3: Module Functions August 2014

3 Module Functions

A module is a plugin to the rule engine. It provides one or more node skills. A node skill
provides a set of skill methods that give a node functionality beyond that which the rule
engine provides. Although modules are normally separate dynamically loaded modules, a
skull program that embeds the rule engine can also call module functions to create new
types of nodes.
The following is a sample module that implements a skill called numstrdiff. Notice the
similarity to the skull example in the previous chapter. Here the nbBind method declares
the skill instead of a main routine. As noted in the comments, the nbBind method is not
always necessary.

NodeBrain Library 13

August 2014 Chapter 3: Module Functions

� �
#include <nb/nb.h>

static nbCELL numstrdiffEvaluate(

nbCELL context,void *skillHandle,

void *knowledgeHandle,nbCELL arglist){

nbSET argSet;

nbCELL cell;

double length=0;

int len=0;

int type;

argSet=nbListOpen(context,arglist);

while((cell=nbListGetCellValue(context,&argSet))){

type=nbCellGetType(context,cell); // get cell type

if(type==NB_TYPE_STRING){

len+=strlen(nbCellGetString(context,cell)); // sum string lengths

}

else if(type==NB_TYPE_REAL){

length+=nbCellGetReal(context,cell); // sum numbers

}

nbCellDrop(context,cell); // release each cell when done with it

}

cell=nbCellCreateReal(context,length-len); // create cell with difference

return(cell); // return sum of numbers minus sum of string lengths

}

static void *numstrdiffBind(

nbCELL context,void *moduleHandle,

nbCELL skill,nbCELL arglist,char *text){

nbCELL facet=nbSkillFacet(context,skill,""); // get primary facet

nbSkillMethod(context,facet,NB_NODE_EVALUATE,numstrdiffEvaluate);

return(NULL);

}

// if the module is named nb_numstrdiff.so, you can drop nbBind

// and change numstrdiffBind above from static to extern.

extern void *nbBind(nbCELL context,char *module,nbCELL argList,char *text){

nbSkillDeclare(context,numstrdiffBind,NULL,"","numstrdiff",NULL,"");

return(NULL);

}
 	
3.1 nbBind Method - Initialize module� �
extern void *nbBind(

nbCELL context, // Context handle returned by nbStart

char *module, // Name of module implicitly or explicitly declared

nbCELL *argList, // Argument cells if explicitly declared - may be NULL

char *text); // Text options if explicitly declared - may be null string

Returns: Module handle - pointer to allocated structure or NULL
 	
You may include an nbBind method in a module to perform initialization tasks. These
tasks might include the allocation of a memory structure for use by any of the node skills

14 NodeBrain Library

Chapter 3: Module Functions August 2014

provided by the module, and/or the declaration of skills. When initialization is not required,
the nbBind method may be omitted from a module. This method does not apply to skull
programs embedding the rule engine since a skull requires no special opportunity to perform
initializaton tasks. For a module, the nbBind method is called once when the module is
first loaded.

The argList and text will be null unless explicity declared.� �
declare module module dynamic_load_library[[(argList)]:text][;]
 	
3.2 nbSkillDeclare - Register a skill� �
int nbSkillDeclare(

nbCELL context, // Context handle returned by nbStart

void *(*bindFunction)(), //

void *moduleHandle, // Point to dynamic load module or NULL

char *moduleName, // Name of module or null string

char *skillName, // Name of skill

nbCELL argList, // Argument list or NULL

char *text); // Option text or null string

Returns:

0 - success

-1 - error (see message)
 	
This function is used to declare a new skill from within a program or module containing
the functions to be used as skill methods. The argList and text arguments are the same
as in a skill declaration command.� �
declare skill skill module.skill(arglist):text
 	
With the nbSkillDeclare function you don’t have an opportunity to alias the skill name, but
do have an opportunity to alias the bind function. A common bind function may be used
for multiple skills using different argList and text values.

3.3 nbSkillFacet - Register a skill facet� �
nbCELL nbSkillFacet(

nbCELL context, // Context handle returned by nbStart

nbCELL skill, // Skill cell

char *name); // Facet name - null string for primary facet

Returns: Facet cell for calls to nbSkillMethod
 	
This function is used to add a facet to a skill and/or obtain a cell handle to the facet for
use in calls to nbSkillMethod. Specify a null string for the name to get a handle to the
primary facet. A multifaceted skill provides a node with multiple sets of skill methods—one

NodeBrain Library 15

August 2014 Chapter 3: Module Functions

set for each facet. Different facets can provide the same or different subsets of all possible
methods.

When a node is referenced within a rule or command set, a facet name may be specified
after the node name, separated by an underscore. In the example below, the bob node
uses the bobbie skill of the robert module. The expression bob_jack(10) is handled by
the Evaluate method of the jack facet of the bobbie skill. The expression bob("abc") is
handled by the Assert method of the primary facet of the bobbie skill.� �
define bob node robert.bobbie;

define r1 on(bob_jack(10)>17) bob("abc");
 	
Warning: This function is not available prior to version 0.9.00.

3.4 nbSkillMethod - Register a skill facet method� �
int nbSkillMethod(

nbCELL context, // Context handle returned by nbStart

nbCELL facet, // Facet cell

int methodId, // Method identifier code

void *function); // Method callback function

Returns:

0 - success

-1 - error (see message)

Method Identifier Codes:

NB_NODE_ALARM

NB_NODE_ALERT

NB_NODE_ASSERT

NB_NODE_COMMAND

NB_NODE_COMPUTE

NB_NODE_CONSTRUCT

NB_NODE_DESTROY

NB_NODE_DISABLE

NB_NODE_ENABLE

NB_NODE_EVALUATE

NB_NODE_SOLVE

NB_NODE_SHOW
 	
This function is used within a skill Bind method within a skull or module to bind a method
to a skill facet. You must first obtain a facet cell using a call to nbSkillFacet with the skill
cell provided as an argument to the Bind method.

Warning: This function is not available prior to version 0.9.00.

16 NodeBrain Library

Chapter 3: Module Functions August 2014

3.5 nbSkillSetMethod - Bind a skill method

� �
int nbSkillSetMethod(

nbCELL context, // Context handle returned by nbStart

NB_Skill *skill, // Skill cell

int methodId, // Method identifier code

void *function); // Method callback function

Returns:

0 - success

-1 - error (see message)

Method Identifier Codes:

NB_NODE_ALARM

NB_NODE_ALERT

NB_NODE_ASSERT

NB_NODE_COMMAND

NB_NODE_COMPUTE

NB_NODE_CONSTRUCT

NB_NODE_DESTROY

NB_NODE_DISABLE

NB_NODE_ENABLE

NB_NODE_EVALUATE

NB_NODE_SOLVE

NB_NODE_SHOW
 	

This function is used within a skull or a Bind method within a module to bind a method
to a skill. The skill cell is provided as an argument to a skill Bind method.

Warning: This function is deprecated but supported for compatibility with older modules.
Starting with release 0.9.01, use the nbSkillFacet and nbSkillMethod functions instead.

NodeBrain Library 17

August 2014 Chapter 3: Module Functions

3.6 nbVerbDeclare - Register a command verb� �
int nbVerbDeclare(

nbCELL context, // Context handle

"module.verb", // Verb

int auth, // Authorization flags

int flags, // Reserved flags - always 0

void *handle, // Handle for module command method

void *handler, // Module command method

char *helpText); // A short string of help text

Returns:

0 - successful

-1 - error (see message)

Authorization Flags:

NB_AUTH_CONNECT - connection permission

NB_AUTH_ASSERT - assert and alert permission

NB_AUTH_DEFINE - define, undefine, redefine permission

NB_AUTH_DECLARE - declare permision (owner)

NB_AUTH_SYSTEM - shell command permission

NB_AUTH_CONTROL - rank, set, stop (owner)
 	
This function is used to create new commands. The verb is specified as module.verb to
avoid conflict with commands provided by the rule engine.

3.7 Module Command Method - Handle a registered
command verb� �

int moduleCmdVerb(

nbCELL context, // Context cell

void *handle, // Handle specified in call to nbVerbDeclare

char *verb, // Verb specified in call to nbVerbDeclare

char *text); // Command body - text after verb

Returns:

0 - successful

-1 - error (see message)
 	
The module command method is provided to process commands you define using nbVerb-
Declare. This method is invoked each time a module command is specified as follows.� �
module.verb text
 	
If your module has not been loaded, the rule engine loads the module first, if found. This
will invoke your nbBind method, which calls nbVerbDeclare to register the command, and
then the associated module command method is called. If the module is loaded by the verb
is not defined, then an error message is displayed.

18 NodeBrain Library

Chapter 4: Skill Methods August 2014

4 Skill Methods

A skill method is a function provided by a module to perform a particular task for nodes of
a given type. The type of node is really defined by the set of skill methods associated with
it. From this perspective, the notions of class and object in an object oriented language
like C++ or Java are similar to our notions of skill and node. Skill methods are like class
methods without the important object oriented notion of inheritance.

Method Purpose
Alarm Process an alarm
Alert Process an alert command
Assert Process an assert command
Bind Associate methods with a skill
Construct Allocate a node’s knowledge structure and handle
Evaluate Produce a value based on computed arguments
Compute Produce a value by first computing argument values
Show Display knowledge structure
Solve Produce a value by first solving for unknowns
Enable Start active participation
Disable Stop active participation
Destroy Free up knowledge structure
Command Process a command
Some of the methods are passed a list of cells as an argument. The nbListOpen and nbList-
GetCellValue functions may be used to iterate throught the cell list. The nbCellGetType,
nbCellGetString, and nbCellGetReal functions are often used to convert the cell values into
C data types.� �
type skill[_facet]Method(nbCELL context,...,nbCELL argList,...){

nbCELL cell;

nbSET set;

int type;

char *string;

double real;

set=nbListOpen(context,arglist);

while((cell=nbListGetCellValue(context,set))){

type=nbCellGetType(context,cell);

if(type==NB_TYPE_STRING){

string=nbCellGetString(context,cell);

...

}

else if(type==NB_TYPE_REAL){

real=nbCellGetReal(context,cell);

...

}

else ...

nbCellDrop(context,cell); // release cell fi done with it

}

}
 	
NodeBrain Library 19

August 2014 Chapter 4: Skill Methods

If you want to access the cells in the argList instead of their values, then use the nbList-
GetCell function instead of nbListGetCellValue. This is necessary in cases where the cell
provides a trigger condition for which you want to monitor the value instead of just ob-
taining the current value. It is also necessary to use this approach when the cells are not
assumed to be enabled, as in the Compute method.� �
type skill[_facet]Method(nbCELL context,...,nbCELL argList,...){

nbCELL cell;

nbSET set;

set=nbListOpen(context,arglist);

while((cell=nbListGetCell(context,set))){

... process cell ...

nbCellDrop(context,cell); // release cell if done with it

}

}
 	

4.1 Alarm - Handle node alarm

� �
void *skill[_facet]Alarm(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle, // Pointer to node knowledge structure

nbCELL cell); // Optional cell to process on alarm

Returns: void
 	� �
synapse=nbSynapseOpen(context,skillHandle,nodeHandle,cell,skill[_facet]Alarm);

nbSynapseSetTimer(context,synapse,seconds);
 	

4.2 Alert - Handle node sentence alert

� �
static oid *skill[_facet]Alert(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle, // Pointer to node knowledge structure

nbCELL argList, // Argument cell list or NULL

nbCELL value); // Value cell

Returns:

0 - success

-1 - error (see message)
 	
20 NodeBrain Library

Chapter 4: Skill Methods August 2014

4.3 Assert - Handle node sentence assertion� �
static void *skill[_facet]Assert(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle, // Pointer to node knowledge structure

nbCELL argList, // Argument cell list or NULL

nbCELL value); // Value cell

Returns:

0 - success

-1 - error (see message)
 	
The Assert method is called to support assertions. It is intended to store knowledge in a
node’s memory for later reference. However, you can use it to take whatever action you
like.

The general syntax for an assertion to a node includes an optional facet, arguments and a
cell expression providing the value. There are shortcuts for three special values.� �
node[_facet](argList)=valueCellExpression

node[_facet](argList) same as node[_facet](argList)=1

!node[_facet](argList) same as node[_facet](argList)=!

?node[_facet](argList) same as node[_facet](argList)=?
 	
This syntax may appear in an assert command, alert command, or in a rule action.
When the node is specified in the command prefix, it is implied on an argument list. The
last three lines in the example below show three ways the treeAssert method could get
called.� �
define spruce node tree;

assert spruce("abc","def")=27; # assert command

spruce. assert ("abc","def")=27; # assert command with node as prefix

define r1 on(a=2) spruce("abc","def")=27; # rule with assertion
 	
4.4 Bind - Create a skill handle and bind methods� �
void *skillBind(

nbCELL context, // Context handle

void *module, // Module handle

nbCELL skill, // Skill cell for registering methods

nbCELL argList, // Argument cell list or NULL

char *text); // Text options or null string

Returns: Skill handle - pointer to an allocated structure, or NULL
 	
The Bind method is invoked by nbSkillDeclare, which is called either by a skull program, a
module’s nbBind method, or by the rule engine for skills that are referenced without prior

NodeBrain Library 21

August 2014 Chapter 4: Skill Methods

declaration. The Bind method is called once for a give skill. It is responsible for binding skill
methods to the skill using the functions described in the Node Module Functions chapter.
The argList and text arguments are null unless explicitly declared as shown below, or
specified in a call to nbSkillDeclare.� �
declare skillAlias skill module.skill[(argList)][:text|;]
 	
4.5 Command - Handle node command� �
static int skill[_facet]Command(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle, // Pointer to node knowledge structure

nbCELL argList, // Argument cell list or NULL

char *text); // Command text or null string

Returns:

0 - successful

-1 - error (see message)
 	
The Command method is called to support extended node commands. This method may
be used to implement your own command language for use within NodeBrain rules. It may
also be used to implement commands to control specific nodes. We list some possibilities
here, but you are free to use it as you like.
• Turn on and off a special trace option.
• Request a debugging dump of a node’s knowledge.
• Initialize a node from an external file or database.
• Purge obsolete or expired knowledge.
• Inject knowledge in a unique syntax (an alternate form of assertion).

Node commands start with the node name which must be followed by a left parenthesis
starting an argument cell list or a colon starting command text.� �
define node node definition

node[(argList)][:text][;]
 	
4.6 Compute - Handle node sentence computation� �
static nbCELL skill[_facet]Compute(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle, // Pointer to node knowledge structure

nbCELL argList); // Argument cell list or NULL

Returns: Value cell
 	
22 NodeBrain Library

Chapter 4: Skill Methods August 2014

The Compute method is similar to the Evaluate method, only it doesn’t assume the ar-
gument cells are currently enabled. You need only implement this method if you want to
achieve a performance improvement over NodeBrain’s default handling for this method. By
default, NodeBrain enables the argument list (causing all argument expressions to be en-
abled and evaluated), calls the Evaluate method, and then disables the argument list. For
some types of nodes you can avoid unnecessary evaluation of disabled argument expressions
by providing your own Compute method. For example, an implementation of AND or OR
would only require computation of the second argument if the first argument were True for
AND or not True for OR.

Use the nbCellCompute function to compute the value of arguments. The following example
computes all argument cells for illustration only—this would make the Compute method
unnecessary.� �
static nbCELL fooCompute(nbCELL context,void *skillHandle,void *nodeHandle,nbCELL argList){

nbCELL cell,valueCell;

nbSET set;

set=nbListOpen(context,argList);

while((cell=nbListGetCell(context,set))){

valueCell=nbCellCompute(context,cell);

...

}

}
 	

4.7 Construct - Handle node definition
� �
static void *skillConstruct(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

nbCELL argList, // Argument cell list or NULL

char *text);

Returns: Knowledge handle - pointer to an allocated structure
 	
The Construct method is called when a node is defined. It is responsible for processing the
argument cells and interpreting text provided in the definition. It may allocate a structure
for knowledge representation. It returns a pointer to the allocated memory structure which
is referenced as nodeHandle in the description of other methods.

The argList and text arguments are from the node definition as shown below.� �
define node node [module.]skill[(argList)][:text | ;]
 	
NodeBrain Library 23

August 2014 Chapter 4: Skill Methods

4.8 Enable - Handle node enable command� �
static nbCELL skill[_facet]Enable(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle); // Pointer to node knowledge structure

Returns:

0 - success

-1 - error (see message)
 	
The Enable method is called to support the enable command for a node. You should only
implement this method for skills that requirement management of enabled and disabled
states.� �
define node node definition

enable node;
 	
Some skills require a node to be enabled when the rule engine daemonizes—switches to
background agent mode. This can be scheduled using the nbListenerEnableOnDaemon
function.

4.9 Evaluate - Handle node sentence evaluation� �
static nbCELL skill[_facet]Evaluate(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle, // Pointer to node knowledge structure

nbCELL argList); // Argument cell list or NULL

Returns: Value cell
 	
The Evaluate method is called to produce a value for a node condition. This method
assumes the argument values have already been determined. It is normally invoked for a
node condition when an argument value has changed.

4.10 Destroy - Handle node destruction� �
static nbCELL skill[_facet]Destroy(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle); // Pointer to node knowledge structure

Returns:

0 - success

-1 - error (see message)
 	
The Destroy method is used to free up memory allocated for a node’s knowledge representa-
tion. This is only be implemented for skills implementing the Construct method. While it

24 NodeBrain Library

Chapter 4: Skill Methods August 2014

is preferable to implement this method when Construct is implemented, it is not required.
If it is not implemented, NodeBrain will be unable to undefine a node associated with the
skill.� �
define node node definition

...

undefine node
 	
4.11 Disable - Handle node disable command� �
static nbCELL skill[_facet]Disable(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle); // Pointer to node knowledge structure

Returns:

0 - success

-1 - error (see message)
 	
The Disable method is called to support the disable command for a node. You will
normally implement this method only when you also implement the Enable method.� �
define node node definition

...

disable node
 	
4.12 Show - Handle request to display node� �
static nbCELL skill[_facet]Solve(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle, // Pointer to node knowledge structure

int option); // Option

Returns:

0 - success

-1 - error (see message)

Options:

NB_SHOW_ITEM - Show as single string without \n for glossary display

NB_SHOW_REPORT - Show a multi-line report of skill and knowledge structures
 	
The Show method is called to display a text representation of a node. When
NB SHOW ITEM is specified, this method displays a single string for use when displaying
a term glossary. This is done using the nbLogPut function with arguments like the printf
function without including \n. When NB SHOW REPORT is specified, a multi-line
report of a node’s skill memory and node memory is produced using nbLogPut with \n
characters included as needed to format the report.

NodeBrain Library 25

August 2014 Chapter 4: Skill Methods

In the example below the rule engine asks the spruce tree to display in NB SHOW REPORT
format. While listing the terms in the spruce glossary, the fir tree is asked to display in
NB SHOW ITEM format.� �
define spruce node tree;

spruce. define a cell 5;

spruce. define fir node tree;

show spruce
 	
4.13 Solve - Resolve unknowns and compute node sentence� �
static nbCELL skill[_facet]Solve(

nbCELL context, // Context handle

void *skillHandle, // Pointer to skill configuration structure

void *nodeHandle, // Pointer to node knowledge structure

nbCELL argList); // Argument cell list or NULL

Returns: Value cell
 	
This Solve method is similar to the Compute method, only it uses the nbCellSolve function
to resolve argument cells instead of nbCellCompute. The nbCellSolve function is more
determined than the nbCellCompute function. When nbCellCompute is asked to compute
an term with an Unknown definition, it returns the Unknown object. When nbCellSolve is
asked to solve for an term with an Unknown definition, it attempts to obtain a definition
and compute a value. A solve method should only solve for argument cells as necessary to
produce a value.
You need only implement the Solve method if you want your node to work in diagnostic mode
more efficiently than NodeBrain’s default behavior. By default, NodeBrain will attempt to
solve for all argument cell expressions and then invoke your Evaluate method.

26 NodeBrain Library

Chapter 5: Node Functions August 2014

5 Node Functions

Function described in this chapter interact with nodes and the first argument is a node
context handle. You may use the context returned by nbStart and the first argument
passed to a skill method as the node context handle. You may also use a node context
handle returned by other API functions.

5.1 nbCmd - Interpret command� �
int nbCmd(

nbCELL context, // Node context handle

char *command, // Pointer to skill configuration structure

int option); // Argument cell list or NULL

Returns:

-1 - Syntax or semantic error. (See message)

0 - Successfully processed

n - Command specific return code

Options:

0 - Use options defined for the context

NB_CMDOPT_ECHO - echo the command

NB_CMDOPT_HUSH - suppress echo

NB_CMDOPT_TRACE - trace command execution
 	
The nbCmd function gives a skull program or module the full range of functionality provided
by the NodeBrain command language.

5.2 nbListenerEnableOnDaemon - Schedule enable when
daemonized� �

int nbListenerEnableOnDaemon(

nbCELL context); // Node context handle

Returns: 0
 	
This function is normally used by a skill’s Construct method when it needs to delay going
into an active state until an agent deamonizes (goes into the background). At this time all
of the rules required by the node have been loaded. The rules and other cells defined for a
node are defined after the node is constructed. The Enable method may look at these cells
to complete configuration before going into and enable state. If a node listens on a network
socket for events to process against the rules defined for the node, this is another reason to
wait until all the rules have been defined before listening. The nbListenerEnableOnDaemon
function provides a call to the Enable method at the appropriate time. Many skills will not
need a delayed enable, and some will not even implement an Enable method.

NodeBrain Library 27

August 2014 Chapter 5: Node Functions

5.3 nbLogMsg - Write a message to the log� �
int nbLogMsg(

nbCELL context, // Node context handle

int msgNumber, // Message number - 0 to 999

char msgType, // Message type

char *format, // Format string for printf function

...); // Variable number of arguments

Returns:

-1 - Error (See message)

0 - Successfully processed

Message Types:

(T)race

(I)nformation

(W)arning

(E)rror

(L)ogic error
 	
The nbLogMsg function is used to write a message to the log, stderr. A message is prefixed
with a time stamp, message identifier, module name, and node name.
In the example below, the message identifier of NM000E has three components. The number
"000" and type "E" are provided by the caller. The "NM" identifies it as coming from the
nbLogMsg function used by skulls and modules. The rule engine uses an internal form of
this function that generates "NB" message identifiers. If you use non-zero message numbers,
they only need to be unique per module because the module name is listed right after the
message identifier. The node name helps to identify which node produced the message,
since there may be many nodes using a given modules.� �
> define fred node tree;

> fred:sksksks

2014/02/23 17:01:49 NM000E tree .fred: Verb "sksksks" not recognized.
 	
The message above was produced by the following call to nbLogMsg.� �
nbLogMsg(context,0,’E’,"Verb \"%s\" not recognized.",verb);
 	
5.4 nbLogPut - Write text to the log� �
int nbLogMsg(

nbCELL context, // Node context handle

char *format, // Format string for printf function

...); // Variable number of arguments

Returns:

-1 - Error (See message)

0 - Successfully processed
 	
28 NodeBrain Library

Chapter 5: Node Functions August 2014

The nbLogPut function is called to write to the log, stderr. With this function you
have complete control of the output. You may find this function has no advantage over
printf; This is often true. But use of this function provides as place to insert additional
functionality, like temporarily splitting log data out to a second file.

NodeBrain Library 29

Chapter 6: Cell Functions August 2014

6 Cell Functions

The functions described in this chapter are for interacting with the rule engine at the cell
level. It is possible to extend NodeBrain by adding your own "action" commands without
using any of these functions. However, most programs that use the NodeBrain Library to
extend NodeBrain will need to use some of these functions.

6.1 nbCellCompute - Compute value of disabled cell� �
nbCELL nbCellCompute(

nbCELL context, // Node context handle

nbCELL cell); // Cell to compute

Returns: Constant cell representing computed value

Warning: When you are finished with the returned value cell, you

must call nbCellDrop to release it to avoid a memory leak.

See also: nbCellEvaluate, nbCellGetValue, and nbCellSolve.
 	
Use nbCellCompute to compute the value of a cell that may be disabled. A cell is disabled
when there are no enabled rules depending on it. The value of a disabled cell is not
maintained in response to assertions. A call to nbCellCompute will return the value of an
enabled cell just like nbCellGetValue. But for a disabled cell, nbCellCompute will recursively
call nbCellCompute on operand cells and then nbCellEvaluate to compute the cell value.
The resulting value is the same as would have already been assigned if the cell had been
enabled.

6.2 nbCellCreate - Create cell from expression� �
nbCELL nbCellCreate(

nbCELL context, // Node context handle

char *cellExpression); // Cell expression

Returns: Cell handle, or NULL on error (see message)

Warning: When you are finished with the returned cell, you must

call nbCellDrop to release it to avoid a memory leak.
 	
The nbCellCreate function is used to obtain a handle to a cell. If the specified cell does
not exist, it is created and a handle is returned. If the cell already exists, a handle to the
existing cell is returned.

NodeBrain Library 31

August 2014 Chapter 6: Cell Functions

6.3 nbCellCreateReal - Create number cell� �
nbCELL nbCellCreateReal(
nbCELL context, // Node context handle

double real); // Real number

Returns: Handle for real number cell

Warning: When you are finished with the returned cell, you must

call nbCellDrop to release it to avoid a memory leak.

Warning: Prior to version 0.9.01 this function failed to grab

the created cell as intended. If you have code that used

this function under prior versions that accidentally

worked, it may break under 0.9.01 and above, requiring

a fix to the calling code.
 	
The nbCellCreateReal function is used to obtain a handle to a real number cell. If the
specified cell does not exist, it is created and a handle is returned. If the cell already exists,
a handle to the existing cell is returned. The value returned by this function is the same as
nbCellCreate would return if passed the string representation of the number.

6.4 nbCellCreateString - Create string cell� �
nbCELL nbCellString(
nbCELL context, // Node context handle

char *string); // String

Returns: Handle for string cell

Warning: When you are finished with the returned cell, you must

call nbCellDrop to release it to avoid a memory leak.
 	
The nbCellCreateString function is used to obtain a handle to a string cell. If the specified
cell does not exist, it is created and a handle is returned. If the cell already exists, a
handle to the existing cell is returned. The value returned by this function is the same as
nbCellCreate would return if passed the string enclosed in double quotes.

6.5 nbCellDrop - Release cell� �
nbCELL nbCellDrop(
nbCELL context, // Node context handle

nbCELL cell); // Cell to drop

Returns: NULL (always)
 	
Each cell has a reference count. The nbCellDrop function is called to decrement the refer-
ence count and free the cell if the count drops to zero.

32 NodeBrain Library

Chapter 6: Cell Functions August 2014

While you may explicitly reserve a cell with a call to nbCellGrab, you must also know when
other functions that return a cell pointer have placed a reserve on it for you. If so, you are
still responsible for issuing a nbCellDrop when you are finished with the pointer. While
this is a burden, it is required for the rule engine to know when an application is finished
with a cell.

As you might imagine, you will get very unhappy results if you make too many calls to
nbCellDrop. You can easily cause a cell to be released and the memory reused while there
are still other pointers to the location of the released cell. One could say the result is
unpredictable, but it is probably better to say the result is predictably bad.� �
drop cell and clear my pointer to it

nodeHandle->somethingCell=nbCellDrop(nodeHandle->somethingCell);
 	
6.6 nbCellEvaluate - Compute enabled cell value after

change� �
nbCELL nbCellEvaluate(
nbCELL context, // Node context handle

nbCELL cell); // Cell to compute

Returns: Constant cell representing cell value

Warning: When you are finished with the returned value cell, you

must call nbCellDrop to release it to avoid a memory leak.

See also: nbCellCompute, nbCellGetValue, and nbCellSolve
 	
Use nbCellEvaluate to compute the value of an enabled cell after a change to an operand.
This function simply provides an interface to the evaluation method of the cell. Normally
the rule engine is aware of the need to call a cell evaluation method and performs this step
automatically. However, it is possible for an application to implement cells for which the
rule engine is not aware of all operands involved in an evaluation. In such a case, there
are operands that are not cells known to the rule engine. Any change to these operands
would then require the application to call nbCellEvaluate, or directly call the evaluation
method.

6.7 nbCellGetReal - Get number from number cell� �
double nbCellGetReal(
nbCELL context, // Node context handle

nbCELL cell); // Real number cell

Returns: Real number stored in specified cell
 	
Use nbCellGetReal to extract a C double value from a real number cell.

NodeBrain Library 33

August 2014 Chapter 6: Cell Functions

6.8 nbCellGetString - Get string from string cell� �
char *nbCellGetString(
nbCELL context, // Node context handle

nbCELL cell); // String cell

Returns: String stored in specified cell
 	
Use nbCellGetString to extract a C char pointer from a string cell.

6.9 nbCellGetType - Get cell type code� �
int nbCellGetType(

nbCELL context, // Node context handle

nbCELL cell); // Cell to inspect

Returns: Cell type code

Type Codes:

NB_TYPE_UNDEFINED

NB_TYPE_DISABLED

NB_TYPE_FALSE

NB_TYPE_UNKNOWN

NB_TYPE_PLACEHOLDER

NB_TYPE_STRING

NB_TYPE_REAL

NB_TYPE_LIST

NB_TYPE_TERM

NB_TYPE_NODE

NB_TYPE_VERB

NB_TYPE_TEXT
 	
The nbCELL data type is a pointer to a cell. When returned by a library function, or passed
to a method, you can call nbCellGetType to determine what type of cell you have. If it is
not an expected type, you can call nbLogMsg to report an error.

6.10 nbCellGetValue - Get enabled cell value� �
nbCELL nbCellGetValue(

nbCELL context, // Node context handle

nbCELL cell); // Cell to compute

Returns: Constant cell representing cell value

Warning: When you are finished with the returned value cell, you

must call nbCellDrop to release it to avoid a memory leak.

See also: nbCellCompute, nbCellEvaluate, and nbCellSolve.
 	
Use nbCellGetValue to get the current value of an enabled cell. This function is used when
there is no need to compute a new value in response to changing operands—when you can

34 NodeBrain Library

Chapter 6: Cell Functions August 2014

assume the rule engine has already responded to changes at the level of the cell in the axon
tree (bottom up tree of dependencies).

6.11 nbCellGrab - Reserve cell� �
nbCELL nbCellGrab(
nbCELL context, // Node context handle

nbCELL cell); // Cell to drop

Returns: The cell argment

See also: nbCellDrop
 	
Each cell has a reference count. The nbCellGrab function is called to increment the reference
count to ensure the cell will not be released while in use—while there is a pointer to it.� �
nbCELL cell=...; // obtained somehow without a grab

nodeHandle=malloc(sizeof(mynode));

nodeHandle->somethingCell=nbCellGrab(context,cell);
 	
Make sure you know if the process you use to create or obtain a cell pointer has already
grabbed the cell on your behalf. If so, you should only call nbCellGrab if you need an
additional grab—when you store the cell pointer more than once and have the possibility
of calling nbCellDrop on each pointer independently. When you are finished with a cell
pointer that you have reserved using a call to nbCellGrab, or that was grabbed for you by
another function, you must release the cell pointer with a call to nbCellDrop to avoid a
memory leak.

6.12 nbCellSolve - Solve for value of cell� �
nbCELL nbCellSolve(
nbCELL context, // Node context handle

nbCELL cell); // Cell to compute

Returns: Constant cell representing cell value

Warning: When you are finished with the returned value cell, you

must call nbCellDrop to release it to avoid a memory leak.

See also: nbCellCompute, nbCellEvaluate, and nbCellGetValue.
 	
Use nbCellSolve to compute the value of a cell for which the value is unknown because it
references terms that are undefined. The goal of nbCellSolve is to obtain definitions for
referenced undefined terms sufficient to derive a value other than Unknown for the cell,
if possible. A term is undefined if it has no formula. The value of an undefined term is
Unknown, but a term can have a value of Unknown without being undefined, because a
formula can evalute to Unknown. When a term definition is a constant (e.g. "abc"), the
value is the same constant. It is often the case in diagnostic mode, where nbCellSolve is

NodeBrain Library 35

August 2014 Chapter 6: Cell Functions

used, that we expect to obtain a constant definition for a term, in which case it is the same
as directly seeking a value.

For example, a call to nbCellCompute for the cell A or B, where A and B are undefined,
will first attempt to obtain a formula (definition) for A and solve the formula to obtain a
value for A. If the value is True, the value of A is returned and no attempt is made to
obtain a definition for B. For A and B, a False or Unknown value for A would be sufficient
to compute the cell value without bothering with B. Like a good doctor or car mechanic, a
NodeBrain diagnostic rule writer should specify the conditions so the least expensive tests
are performed first, enabling the most expensive tests to be avoided when possible.

Warning: This feature of NodeBrain requires additional work to refine the methods by
which definitions can be obtained. Currently, prompts in interactive mode and scripts in
background mode are supported.

6.13 nbListOpen - Open a cell list to iterate
� �
nbSET nbListOpen(
nbCELL context, // Node context handle

nbCELL cell); // List cell to open

Returns: List set cell cursor
 	
The nbListOpen function is used to obtain a set iterator for a list of cells. Skill methods often
use this function, and related functions, to process an argument list, which is represented
as a list of cells.

6.14 nbListGetCell - Get next cell in list
� �
nbCELL nbListGetCell(

nbCELL context, // Node context handle

nbSET cell); // List set cell cursor

Returns: Next cell in the set, or NULL at end of list

Warning: The returned cell has been grabbed, so you must

call nbCellDrop when it is no longer needed.
 	
The nbListGetCell function is used obtain the next cell in a list of cells. The next cell is
returned and the set iterator advances. A NULL value is returned when the end of the list
is reached.

36 NodeBrain Library

Chapter 6: Cell Functions August 2014

6.15 nbListGetCellValue - Get value of next cell in list� �
nbCELL nbListGetCellValue(

nbCELL context, // Node context handle

nbSET cell); // List set cell cursor

Returns: Value cell for Next cell in the set, or NULL if end of list

Warning: The returned cell has been grabbed, so you must

call nbCellDrop when it is no longer needed.
 	
The nbListGetCellValue function returns the value of the next cell in a list. The value of
a cell is itself a cell. The set iterator steps within the list on each call and NULL returned
at the end of the list.

6.16 nbSynapseOpen - Register an Alarm method

6.17 nbSynapseSetTimer - Set an alarm

6.18 nbTermCreate - Create a new term� �
nbCELL nbTermCreate(

nbCELL context, // Node context handle

char *identifier, // Term to create within context

nbCELL definition); // Cell that defines the term

Returns: Term cell, or NULL on error (see message)

Warning: The returned cell has been grabbed, so you must

call nbCellDrop when it is no longer needed.
 	
The nbTermCreate function is used to create a new term within the specified context. The
definition of the term is provided by a cell handle obtained by another library function,
perhaps nbCellCreate.

6.19 nbTermLocate - Locate an existing term� �
nbCELL nbTermLocate(
nbCELL context, // Node context handle

char *identifier); // Term identifier to locate

Returns: Term cell handle, or NULL if not found

Warning: The returned cell has been grabbed, so you must

call nbCellDrop when it is no longer needed.
 	
The nbTermLocate function is used lookup a term within the specified context.

NodeBrain Library 37

August 2014 Chapter 6: Cell Functions

6.20 nbTermSetDefinition - Assign new definition to term� �
nbCELL nbTermSetDefinition(

nbCELL context, // Node context handle

nbCELL term, // Term to update

nbCELL definition); // Cell that defines the term

Returns: Cell handle of new value

Warning: The returned cell has been grabbed, so you must

call nbCellDrop when it is no longer needed.
 	
The nbTermSetDefinition function is used to redefine a term. The new value returned is
the value of the new definition.� �
nbCELL term,definition,value;

nbCmd(context,"assert a=1,b=1;",0);

definition=nbCellCreate(context,"a*b");

term=nbTermCreate(context,"bob",definition);

definition=nbCellDrop(context,definition);

definition=nbCellCreate(context,"a+b");

value=nbTermSetDefinition(context,term,definition); // Redefine "bob"

// value

nbCellDrop(context,term);

nbCellDrop(context,definition);

nbCellDrop(context,value);
 	

38 NodeBrain Library

Chapter 7: Medulla Functions August 2014

7 Medulla Functions

NodeBrain Library 39

Chapter 8: Spine Functions August 2014

8 Spine Functions

NodeBrain Library 41

Index August 2014

Index

A
alarm method . 20
alert method . 20
assert method . 21

B
bind method . 21

C
cell functions . 31
cerebrum . 5
command language . 1
command method . 22
compute method . 22
concepts . 1
construct method . 23

D
destroy method . 24
disable method . 25

E
enable method . 24
evaluate method . 24

I
Interface Modules . 4
interface structure . 1

L
Library Functions . 4

M
medulla . 6
medulla Functions . 39
methods . 7
module command method . 18
module functions . 13

N
nb servant . 4
nbBind method . 14

nbCellCompute . 31
nbCellCreate . 31
nbCellCreateReal . 32
nbCellCreateString . 32
nbCellDrop . 32
nbCellEvaluate . 33
nbCellGetReal . 33
nbCellGetString . 34
nbCellGetType . 34
nbCellGetValue . 34
nbCellGrab . 35
nbCellSolve . 35
nbCmd . 27
nbListenerEnableOnDaemon 27
nbListGetCell . 36
nbListGetCellValue . 37
nbListOpen . 36
nbLogMsg . 28
nbLogPut . 28
nbServe . 11
nbSkillDeclare . 15
nbSkillFacet . 15
nbSkillMethod . 16
nbSkillSetMethod . 17
nbStart . 11
nbStop . 11
nbSynapseOpen . 37
nbSynapseSetTimer . 37
nbTermCreate . 37
nbTermLocate . 37
nbTermSetDefinition . 38
nbVerbDeclare . 18
node functions . 27

P
piping commands . 2

S
servant interface . 3
servant module . 3
servants . 3
show method . 25
Skill Methods . 19
skull functions . 9
solve method . 26
source files . 2
spine . 6
spine functions . 41

NodeBrain Library 43

	Concepts
	Interface Structure
	Command Language
	Interactive Session
	Source Files
	Piping Commands to NodeBrain
	Piping Action Messages from NodeBrain

	Servant Interface
	Source and Action Servants
	Servant Node Module
	Using NodeBrain as a Servant

	Interface Modules
	Library Functions
	Cerebrum
	Medulla
	Spine

	Selecting an Interface
	Methods

	Skull Functions
	nbStart - Start rule engine
	nbServe - Serve engine arguments
	nbStop - Stop rule engine

	Module Functions
	nbBind Method - Initialize module
	nbSkillDeclare - Register a skill
	nbSkillFacet - Register a skill facet
	nbSkillMethod - Register a skill facet method
	nbSkillSetMethod - Bind a skill method
	nbVerbDeclare - Register a command verb
	Module Command Method - Handle a registered command verb

	Skill Methods
	Alarm - Handle node alarm
	Alert - Handle node sentence alert
	Assert - Handle node sentence assertion
	Bind - Create a skill handle and bind methods
	Command - Handle node command
	Compute - Handle node sentence computation
	Construct - Handle node definition
	Enable - Handle node enable command
	Evaluate - Handle node sentence evaluation
	Destroy - Handle node destruction
	Disable - Handle node disable command
	Show - Handle request to display node
	Solve - Resolve unknowns and compute node sentence

	Node Functions
	nbCmd - Interpret command
	nbListenerEnableOnDaemon - Schedule enable when daemonized
	nbLogMsg - Write a message to the log
	nbLogPut - Write text to the log

	Cell Functions
	nbCellCompute - Compute value of disabled cell
	nbCellCreate - Create cell from expression
	nbCellCreateReal - Create number cell
	nbCellCreateString - Create string cell
	nbCellDrop - Release cell
	nbCellEvaluate - Compute enabled cell value after change
	nbCellGetReal - Get number from number cell
	nbCellGetString - Get string from string cell
	nbCellGetType - Get cell type code
	nbCellGetValue - Get enabled cell value
	nbCellGrab - Reserve cell
	nbCellSolve - Solve for value of cell
	nbListOpen - Open a cell list to iterate
	nbListGetCell - Get next cell in list
	nbListGetCellValue - Get value of next cell in list
	nbSynapseOpen - Register an Alarm method
	nbSynapseSetTimer - Set an alarm
	nbTermCreate - Create a new term
	nbTermLocate - Locate an existing term
	nbTermSetDefinition - Assign new definition to term

	Medulla Functions
	Spine Functions
	Index

